
The Open INcentive Kit (OINK):
Standardizing the Generation, Comparison, and Deployment of

Incentive Systems
Noah Klugman

University of California, Berkeley

Berkeley, California

nklugman@berkeley.edu

Santiago Correa

University of Massachusetts, Amherst

Amherst, Massachusetts

scorreacardo@umass.edu

Pat Pannuto

University of California, Berkeley

Berkeley, California

ppannuto@berkeley.edu

Matthew Podolsky

University of California, Berkeley

Berkeley, California

podolsky@berkeley.edu

Jay Taneja

University of Massachusetts, Amherst

Amherst, Massachusetts

jtaneja@umass.edu

Prabal Dutta

University of California, Berkeley

Berkeley, California

prabal@berkeley.edu

ABSTRACT
Incentives are a key facet of human studies research, yet the state-

of-the-art often designs and implements incentive systems in an

ad-hoc, on-demand manner. We introduce the first vocabulary for

formally describing incentive systems and develop a software in-

frastructure that enables UI-based graphical generation of complex,

auditable, reliable, and reproducible incentive systems. We call this

infrastructure the Open INcentive Kit (OINK). A review of recent

literature from several communities finds that of the one hundred and

twenty-one publications that incorporate incentives, only thirty-one

describe their incentive system in detail, and all of these could be

implemented using OINK. We evaluate OINK in practice by using

it for an active energy monitoring deployment in Ghana and find

that OINK successfully facilitates thousands of individual incentive

payments. Finally, we describe our efforts to generalize OINK for

different research communities, specifically focusing on architec-

tural decisions around extensibility to support unanticipated use

cases. OINK is free and open-source software.

CCS CONCEPTS
• Human-centered computing Field studies; • Information

systems Incentive schemes.

KEYWORDS
Incentive System, Human Subject, Open Source

ACM Reference Format:
Noah Klugman, Santiago Correa, Pat Pannuto, Matthew Podolsky, Jay Taneja,

and Prabal Dutta. 2019. The Open INcentive Kit (OINK): Standardizing the

Generation, Comparison, and Deployment of Incentive Systems. In Tenth
International Conference on Information and Communication Technologies
and Development (ICTD ’19), January 4–7, 2019, Ahmedabad, India. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3287098.3287101

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICTD ’19, January 4–7, 2019, Ahmedabad, India
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6122-4/19/01.

https://doi.org/10.1145/3287098.3287101

1 INTRODUCTION
Experiments involving human subjects are common in a variety

of fields, including psychology, economics, and computer science,

among others. These experiments often encourage user participation

by providing incentives to participants [14, 30, 50, 60]. It is known

that incentive system design choices can have significant effects on

the results of a study [5, 14, 22, 52], yet incentive systems receive

relatively little discussion in the literature and, even when they do,

there is no standard vocabulary to describe them [25, 52].

While information technology (IT) has revolutionized many as-

pects of the scientific enterprise—innovating classical measurement

techniques such as surveys [24] and improving data analytics [55]—

incentive systems have received little attention. Each experiment

that uses incentives requires the researcher to develop methods to

track when incentives are due, transfer the incentive, and provide

accounting. In some cases, the cost of implementing a study-specific

incentive system might be small—it may be easy to pay small pop-

ulations for their participation in a survey—but implementation

costs increase with the complexity of incentive triggers and with an

increase in the size of the participant population.

To facilitate the description and comparison of incentive systems

in the literature, and to reduce their experimental overhead while in-

creasing their quality, we introduce the Open INcentive Kit (OINK),

the first work to propose a standard vocabulary for describing a

generic incentive system and to support and automate the design,

deployment, and management of end-to-end incentive systems.

OINK stems from the insight that very different studies share

similar incentive system patterns. For example, a study that incen-

tivizes a community health worker to visit a village (as reported

from a mobile app tracking GPS) has a similar pattern to a study that

incentivizes a driver to observe the speed limit (also as reported from

a mobile app tracking GPS). OINK identifies and implements a core

infrastructure that is common to many incentive systems, and offers

a simple interface for implementing and sharing experiment-specific

modules with other OINK users to be repurposed for their studies.

OINK supports high-quality, modular incentive systems for a

range of simple to complex applications with minimal software

programming. The system enables turn-key experiment planning and

monitoring, including detailed transaction logging, visualizations of

error states, and participation trends.

1

https://doi.org/10.1145/3287098.3287101
https://doi.org/10.1145/3287098.3287101

ICTD ’19, January 4–7, 2019, Ahmedabad, India N. Klugman et al.

While incentive systems are used in a broad array of research

settings, we initially introduce OINK as a tool for supporting re-

search in development contexts, which have a history of innovative

IT applications [28]. In particular, these settings challenge incentive

systems because they have fewer sources of data or sensing devices

and researchers may be working remotely with initially limited un-

derstanding of the context. These settings particularly benefit from

the capabilities of OINK, including adapting to mobile money sys-

tems and simulating or modifying incentives to achieve a balance

between effectiveness and manageability of incentives.

1.1 OINK Requirements
1.1.1 Reliable and Auditable. There is an ethical responsibility to

provide all incentives promised and to ensure research funding is

properly spent [11, 22]. An incentive system must always transfer

incentives when expected. Further, it must provide bookkeeping to

prove incentives are delivered as expected.

1.1.2 Broadly Accessible. The abstractions in this architecture must

minimize the amount of work to generate incentive systems that fit

the needs of a study. Anyone with a base level of technical literacy

must be able to use the system without writing large amounts of

code and maintaining a server.

1.1.3 Extendable. The architecture must allow for functionality to

be developed by the community to fully suit a broad set of applica-

tions. Further, to ensure wide applicability, these extensions must be

shareable and iterable between users.

1.1.4 Scalable. Incentive systems must be easy to scale both in

population size and in complexity of incentive triggers. Further, the

computing costs to run the system should be low regardless of scale.

1.1.5 Reproducible. When either the original designer or a third

party replicates a study, the original incentive systems must be triv-

ially recreated, shared, or directly reused.

1.1.6 Secure and Accessible. Incentive systems must prevent the

unauthorized transfer of incentives stemming from either fraud or

misconfiguration of the system. Additionally, incentive system ad-

ministration must not require low-level server administration.

2 BACKGROUND
We consider work that explores the impact and regulation of incen-

tive systems as well as work that demonstrates examples of IT being

applied to human subjects research. OINK is the first work to explore

principled generation and deployment of incentive systems.

2.1 Why Do Incentive Systems Matter?
Incentive system design is researched in many disciplines. The type

of incentive chosen, the stimulus for incentive, and the method of

incentive delivery have all been shown to have effects on presenta-

tion [14], selection bias [30], validity [9], response bias [50], as well

as influencing other aspects of experimental design [5]. Thus, know-

ing more about an incentive system should be viewed as important

in understanding a result [30]. OINK aims to make it easier for a

community to include discussions of incentive systems design and

implications by providing a common vocabulary for the literature.

OINK presents an opportunity to make incentive system design a

first-order requirement of research projects. Auction-based mecha-

nisms have shown in simulation that incentive design, including the

amount, schedule, and transfer method, can significantly impact par-

ticipant recruitment and retention, for both short-term and long-term

participants [12, 27]. OINK enables principled characterization and

iteration of these parameters.

2.2 Incentive Systems in the Literature
Stovel et al. examine 251 articles in five medical education journals

to extract the incentives used [52]. They find 8% of papers directly

describe the incentive system employed. This low percentage is

presented as problematic due to both missed information transfer be-

tween researchers about incentive system design for future research

and because it could hide underlying motivations of participants. We

include the papers identified by Stovel et al. in our analysis in Sec-

tion 4.1. We found no other work surveying the literature from other

communities for descriptions of incentive systems used.

2.3 Incentive System Requirements and Policy
In the United States there are federal guidelines provided for human

subject incentive systems [37], and universities adopt their own

additional guidelines in their respective Institutional Review Boards

(IRB) [11, 39]. Because there is no standard best practice, OINK

does not guide users towards a specific ethical incentive system

design; instead it leans on the standard practice of IRB submission,

comments, and revision. A principled system like OINK opens up

the possibility for the export of standard-language descriptions of

any incentive systems constructed with it to be submitted to an IRB,

potentially removing hurdles towards regulatory approval.

Similarly, governments enforce many different regulations re-

garding the electronic transfer of monetary funds [6, 8, 36, 38, 49].

OINK assumes that any digital money or tanagable good payment

API invoked will bear any regulatory responsibilities.

2.4 Bringing IT to the Scientific Method
Information technology is already applied to human subjects experi-

ments. A somewhat similar service to OINK is Amazon Mechanical

Turk (MTurk), which provides a structured way to pay “Workers” for

completing “Human Intelligence Tasks” (HIT) [1]. Unfortunately,

MTurk does not allow for easy enrollment of participants and there-

fore could not easily be repurposed for a study that requires the

enrollment of a specific population. Further, MTurk provides only

the single stimuli (completing a HIT) which does not cover the

full set of possible incentive systems. For example, if a study has a

non-monetary incentive like providing a cookstove, MTurk does not

provide a mechanism to facilitate this transfer.

IT is improving the generation and deployment of data collection

systems, whether they are based on surveys [24], constrained geospa-

tially [41], or incorporate sensors [7]. Open Data Kit (ODK), a suite

of tools for data collection on mobile devices, has been adopted

across and expanded by multiple academic and commercial commu-

nities, and is used everywhere from 42 countries to the International

Space Station. [40]. OINK takes its name as an homage to ODK.

We hope this work identifies a similarly powerful abstraction for

incentive systems as ODK described for data collection.

2

The Open INcentive Kit (OINK) ICTD ’19, January 4–7, 2019, Ahmedabad, India

3 DESIGN AND IMPLEMENTATION
Before designing OINK, we derive a generic incentive system vo-

cabulary from a literature review (see Section 4.1). This vocabulary

then informs a generic incentive system architecture, the implemen-

tation of which we call OINK. We explain how each of the words in

our vocabulary is implemented in OINK and introduce the enabling

technologies. Finally, we share wireframe designs of the OINK

user interface to illustrate how we envision non-computer scientists

interacting with the system.

3.1 Incentive System Vocabulary
We propose a vocabulary to describe the generic incentive system.

To derive this vocabulary, we review 390 papers and abstracts to

identify descriptions of incentive systems in any detail. We then

identity the minimal vocabulary needed to describe each incentive

system end-to-end. Finally, by taking the intersection of each of these

descriptions, we can identify words and construct our vocabulary:

• Stimulus: This is the trigger event for a transfer of an incentive. It

contains information about the incentive to be transferred on event

and to whom. Example stimuli include the completion of a survey

or the keeping of an app on a mobile phone for a period of time.

• Payment: Payment is the logic to transfer an incentive. Example

payments include a call to the PayPal API or the manual transfer of

a good to a participant.

• Identity: Identity is maintained for both participants and field

officers (when applicable). Example usage include ensuring that

incentives are transferred to the correct person using the correct

method of transfer, tracking participant consent, and keeping track

of the behaviors of the research staff either for fraud detection.

• Fraud: Fraud is the undesired transfer of an incentive. Fraud detec-

tion ensures the transfer of an incentive only after verification con-

ditions has been reached. Example verification conditions include

setting and enforcing a maximum number of hourly incentives

per participant or stopping transfer of incentives to all participants

located outside a pre-defined geographic area.

• Alarm: An alarm triggers if a condition within the incentive system

is been met. Example conditions include payment error, system

downtime, fraud, and budget exceeded.

• Incentive System: An incentive system is a system that keeps

track of when a given amount of incentive should be sent (using

a single stimulus and fraud detection), what incentive should be

sent (using a payment), to whom an incentive should be sent, and

whether an incentive was transferred (using an alarm on either

completion or failure). It can only be triggered by a single stimulus

and only causes a single transfer of incentive.

• Experiment: An experiment is a collection of one or more incen-

tive systems that share common participants.

3.2 System Architecture
We introduce the OINK system architecture, which contains a run-

time, high-level layers to support the administration of groups of

incentive systems, and low-level layers that implement each word

in the generic incentive systems described in Section 3.1. We then

revisit the requirements introduced in Section 1.1 and describe the

design decisions made to ensure each are satisfied. The OINK system

hierarchy is shown in Figure 1 and described from the top down.

Figure 1: OINK system hierarchy. OINK sits at the highest level,

followed by experiments and incentive systems. The OINK and

experiment levels include managers, which provide administration,

creation, and visualization at the respective level. Identity manage-

ment is scoped to the experiment layer. Incentive systems are made

up of multiple functions. Each function implements words from the

generic incentive system vocabulary gathered from the literature.

Notice that every incentive system is not the same, alarm and fraud

detection functions are optional. All non-manager elements of the

system run in a functions as a service (FaaS) cloud runtime.

3.2.1 Runtime. OINK is implemented using a functions as a ser-

vice (FaaS) runtime. FaaS is a cloud-based architecture that gained

commercial traction in 2014 [4]. It provides serverless computing,

allowing computation to occur without configuring and hosting a

long-running runtime environment. The primary programming ab-

straction for FaaS is a function, which is invoked, wakes up, com-

putes, returns, and then is destroyed. Throughout the rest of the

discussion, “function” refers to a function within a FaaS runtime.

The current OINK implementation uses the Google Cloud ecosys-

tem, depending on Google Functions [16] for the FaaS architecture

and Google Firestore for the datastore [15]. We chose to use the

Google ecosystem for the OINK implementation because our first

use case for OINK involved an Android app, which integrates well.

Using Google tools for all components of OINK allows for a single

authentication for all administration of the system. There is, however,

no technical reason why OINK could not be entirely reimplemented

using competing FaaS providers.

One limitation of FaaS is that it does not support long-running

processes. Because of this, the OINK manager and the experiment

manager—both of which are UIs and need to be accessible for as

long they are being interacted with—are implemented as a webapp.

The webapp authenticates with the FaaS runtime and datastore back-

end to load data and spawn new functions. If the webapp crashes,

the FaaS runtime will continue hosting any active incentive systems.

3.2.2 OINK-Level: OINK Manager. This manages multiple experi-

ments and is the entrance into the OINK UI. It allows environment

variables to be set, including top-level authentication credentials re-

quired for administrating OINK, and provides an interface to create

experiments. OINK can organize experiments with an arbitrarily

large and complex number of incentive systems. The OINK manager

is being implemented as a webapp and a preliminary wireframe

design is shown in Figure 2a.

3

ICTD ’19, January 4–7, 2019, Ahmedabad, India N. Klugman et al.

(a) The OINK manager. (b) Generation of a incentive system. (c) Simulation of a incentive system.

Figure 2: Three wireframes of the OINK system. (a) Shows the OINK manager with two available experiments (DumsorWatch Ghana and

GridWatch Kenya). (b) Shows an experiment manager being used to generate an incentive system by selecting and parameterizing stimulus,

payment, and alarm functions. This is generating the invite system (#2) from Table 2. (c) Shows the area in the experiment manager where the

incentives consumed across multiple incentive systems can be calculated.

3.2.3 Experiment-Level: Experiment Manager. This contains multi-

ple functionalities and is implemented as a page of a webapp. It is

where a user generates incentive systems and is shown in Figure 2b

and described in Section 3.2.5. It allows for high-level management

of multiple incentive systems. For example, an experiment can have

a budget, which if exceeded pauses all incentive systems in that

experiment. It is where a user can simulate an experiment to see how

much incentive will be consumed with different incentive system

designs and is shown in Figure 2c. Finally, it is where visualizations

of the performance of the incentive systems are located.

3.2.4 Experiment-Level: Identity List. Each experiment implements

a single identity database that is used by all the incentive systems

in the experiment. The identity database is default read, create,

and update-only, which ensures consistency of participant identities

across incentive systems. Each row in the identity table contains (at

a minimum) a unique identifier, an array of valid payment methods,

timestamps at participant creation and modification, and current

participant status (enrolled, inactive, unenrolled).

3.2.5 Incentive System-Level: Overview. A single incentive system

is shown in Figure 3 and each part is described in detail below. Every

incentive system requires the OINK user to choose and parameterize

exactly one stimulus function and at least one payment function.

The core functions are included with every incentive system and

require no parameterization. Along with these functions, multiple

alarm and fraud detection functions can be added, each of which

require selection and parameterization by the user.

3.2.6 Incentive System-Level: Functions. Every incentive system

is implemented as a group of functions, most of which are also

words defined within the generic incentive system vocabulary. A

function can be understood to be a standalone logical block within

the incentive system. We introduce all of the function types below

and their interactions in Figure 3.

• Core: The core is the only area that does not contain words from

the generic incentive system vocabulary. It is implemented by

OINK and not modified by the user. It provides meta-functionality

Figure 3: Simplified Incentive System Diagram. This diagram

shows an OINK incentive system. The stimulus-tx function is trig-

gered to start the transfer of an incentive. The request moves to

the fraud detection function which accesses historic transactions to

determine validity. It then moves to the core-1 function which logs

the request. The payment function transfers the incentive. Then the

core-2 function stores the result and wakes up the stimulus-rx func-

tion, which performs stimulus-specific cleanup such as notifying the

user. At any point, any function can trigger an alarm function.

for all incentive systems including logging and error handling.

There are two functions and two databases that make up the Core:

function core-1, function core-2, database transaction-tx and data-

base transaction-rx. Function core-1 wakes up on write to the

transaction-tx table by a stimulus function. The transaction-tx data-

base holds transaction information and includes all information

needed to trigger a payment function. The core-2 function wakes

up and logs to the transaction-rx table when a callback from a

payment function returns, and will invoke the stimulus-rx function

for any stimulus-specific reporting.

• Stimulus: A stimulus is a trigger that results in incentive transfers.

Each incentive system contains only a single stimulus. OINK pro-

vides an interface for a stimulus to connect to an incentive system.

For example, OINK provides a way for someone who has gath-

ered a survey response to automatically trigger an incentive. The

parameters for this stimulus would be the person to pay, the person

who conducted the survey, the amount of money to pay, the desired

method of payment, and when to pay (immediately, after upload

and fraud check, etc.). This stimulus then exists over the lifetime

of the incentive system and allows for the field officer to trigger an

incentive transfer by collecting and transferring this data to OINK.

4

The Open INcentive Kit (OINK) ICTD ’19, January 4–7, 2019, Ahmedabad, India

There are two functions required to implement each stimulus:

stimulus-tx and stimulus-rx. The stimulus-tx function contains the

logic to trigger OINK, the amount of an incentive that this trigger

should release, who the incentive should be transferred to (as an

index to the experiment-level identity table), how the incentive

should be transferred, and how the result of a stimulus should be

displayed back to the user. The stimulus-rx function writes the

result of a payment into the transaction-rx database and optionally

does stimuli specific clean up. For example, a stimuli generated

from an action in a mobile app action might want to display a

message back to the user after a successful payment in that app.

Functions implementing a small group of stimuli, including an

HTTP REST API, a cron-based periodic system, and a Google

analytics receiver [19], are provided in the OINK codebase to

demonstrate standard ways of triggering the incentive system.

• Payment A payment function provides logic to transfer an incen-

tive to a user. For example, a payment function could be a wrapper

to the third party payment API. As there is a one-to-one mapping

of a stimulus to a payment, there is only a single payment function

per incentive system. The inputs to a payment function include the

amount of the incentive, the type of incentive, the time a payment

was attempted, the reason an incentive is being generated, and the

identity of the receiver. The output from a payment function is a

confirmation that a given incentive transfer occurred or an error

message and is collected by the core-2 function and written to

the transaction-rx table. Additionally, the payment function can

be parameterized as a pass-through, allowing for an experimenter

to opt-out of transferring incentives, which can be useful for test-

ing. A starting group of payment functions including the Korba

airtime distribution API [26] and a manual payment over SMS are

implemented in the OINK codebase.

• Fraud Detection The fraud detection function contains rules that

can prevent a stimulus from triggering an incentive in order to

prevent unattended transfer. For example, a fraud detection function

can ensure that a participant receives no more than a maximum

number of an incentive. If this is violated, the suspect transaction is

paused until an researcher manually investigates. Fraud detection

functions can access any of the databases in OINK to query historic

state for any type of undesired patterns. Multiple types of fraud
detection functions can be defined within a single incentive system.

• Alarm: Any part of an incentive system can trigger an alarm. The

input to an alarm function is a message and the output can be

an API, webhook, or an internally-provided function to generate

and transmit a notification. Alarm functions are useful for error

tracking and for periodic updates. Multiple alarm functions can be

included per incentive system. A small group of alarm functions are

implemented in the OINK codebase including email and SMS [56].

3.2.7 Revisiting Requirements. We revisit each system require-

ment in Section 1.1 and describe how these requirements are satisfied

by the OINK design and implementation.

3.2.8 Requirement: Reliable and Auditable. We implement OINK

on top of the Google FaaS runtime [16]. This bootstraps reliability

off Google who, like each of three largest commercially-available

FaaS runtime providers, employ dedicated staff to keep their FaaS

runtime operational. Recognizing that the FaaS runtime creates a log

each time a function is invoked and destroyed, we design OINK to

invoke a new function whenever data is moved through an incentive

system. This ensures a record at the entry and exit point of each

stimuli, fraud, payment, core, and alarm function.

3.2.9 Requirement: Broadly Accessible. The FaaS runtime by defi-

nition removes the need for the configuration and maintenance of

a long-running server to host OINK, reducing the barrier of entry

for non-technical users. Further, we designed OINK with input from

non-computer science researchers and the first deployment of OINK

supports an interdisciplinary project. We received early feedback

on the usability of OINK based on wireframes of the user interface

(shown in Figure 2) and will focus on usability as future work.

3.2.10 Requirement: Expandable. To support large numbers of dif-

ferent incentive system configurations, OINK is designed so that

each word in the incentive system can be completely customized.

This is done by coding a function for that word, which can be a

technically challenging task. Thankfully, once a custom function is

written, the FaaS runtime allows for it to be shared between users to

be incorporated into their incentive system design. We hope that once

popular functions have been implemented once, it will be unlikely

that a user will have to implement an extension to OINK. We are

motivated by the emergence of people sharing useful FaaS functions

to support applications on other platforms [34].

3.2.11 Requirement: Scalable. Every commercially available FaaS

runtime operates at scale and supports millions of function invo-

cations out-of-the-box. This allows OINK to scale without user

intervention. As more incentives are transferred, more functions will

simply be called. Because every major FaaS platform allows at at

least one million free invocations monthly [2, 16, 31], OINK will

experience minimal operating costs for many experiments.

3.2.12 Requirement: Reproducible. OINK can be reproduced with-

out requiring any low-level server configuration. This is possible

both because the FaaS runtime will be the same for all users, and be-

cause all major FaaS providers provide databases and virtual servers

that can be launched pre-configured to host the OINK databases,

OINK manager and experiment manager webapps. Further, each part

of OINK is independently reproducible because the same function

will run on any FaaS runtime (requiring a lightweight adaptation

layer to the specific FaaS runtime environment).

3.2.13 Requirement: Secure and Accessible. OINK bootstraps se-

curity and access control off the authentication system of both the

FaaS service and the payment API. Each of the three FaaS services

evaluated provide abstractions to protect and provide levels of ac-

cess [2, 16, 31]. By keeping all functions and logs within this system,

data generated and the code being run are secured by the FaaS ser-

vice provider. Some stimuli themselves can bootstrap security with

these same protections; for example, an app developed with Fire-

base Cloud Messaging can use Google APIs to authenticate with an

OINK system using Google Functions as its FaaS backend out-of-

the-box [17]. For monetary or other digitally transferred incentives

such as airtime, OINK bootstraps security off methods implemented

by the external APIs performing the transfer.

5

ICTD ’19, January 4–7, 2019, Ahmedabad, India N. Klugman et al.

Type Survey Deployment Both
No Some No Some No

Mention Mention Discussed Mention Mention Discussed Human

Papers 15 11 22 19 18 5 27

Abstr 8 1 2 9 9 2 36

Total 23 12 24 28 27 7 63

Table 1: Discussion of incentive systems found in 390 publica-
tions: 150 ACM DEV papers and shorts, 215 medical education
research papers, 3 ICTD Papers, and 22 CHI Papers. Note the

small number of papers that discuss incentive systems in detail. For

each paper that discusses an incentive system, we find that the OINK

incentive system vocabulary fully describes the incentive system.

4 EVALUATION
We evaluate incentive systems in the wild by performing a literature

review of 175 papers across three development-related ACM com-

munities. We also consider work containing descriptions of incentive

systems discovered from an examination of 215 publications from

medical journals [52]. We evaluate the performance of OINK under

an ongoing deployment managed by the authors where participants

are incentivized for nine different types of activities. OINK is being

used to implement all incentive systems for this deployment and has

issued over three thousand incentive transfers. Finally, we select the

most complicated incentive system found in our literature review —

taken from A Feasibility Study of an In-the-Wild Experimental Public
Access WiFi Network which appeared in the fifth ACM DEV — and

discuss how OINK could be configured to support this work [48].

4.1 Incentive Systems in the Wild
To uncover the taxonomy of incentive systems in the technology

for development community, we perform a literature search.

1

We

select papers using the Google Scholar query "source:Computing

source:Development" and select the first 150 papers [21]. We re-

view each paper and decide whether they had no incentive system

(papers using existing datasets, wireless network protocols, etc),

or if an incentive system was present. We review prior CHI and

ICTD proceedings based on titles that seem likely to have human

factors research. Finally, we review papers identified by Stovel et

al. that contain incentive system descriptions from the medical com-

munity [52]. Because of the intuition that a survey might have a

simpler incentive system that would be less likely to be reported

in the literature, we then classify each paper’s incentive system as

either triggered by a survey or by a deployment. This line can be

fuzzy at times and for these cases, we make a subjective decision

and place the work in a single category. We further categorize works

based on their discussions of the incentive system: no mention, some

mention, or discussion. When a paper mentions giving someone

technology or asking someone questions but does not go further, we

consider this “no mention.” When a paper mentions the work being

done in a school or implies that participants volunteered, we classify

as “some mention.” When a paper mentions what people received or

what triggered an incentive, we classify as “discussion.” The results

of this classification are summarized in Table 1.

1

The full citation of the papers selected and their classifications can be found at

https://www.github.com/lab11/OINK/papers/ictd18/citations.csv.

Figure 4: Three different stimuli from DumsorWatch. In (a) a

completed survey is uploaded which writes to a collection (sur-

veys_completed) and wakes up the survey_tx stimuli-tx function.

In (b) a user sends a download invitation in an app, writing to a

collection (invites_sent) and waking up the app_invite_tx stimuli-tx
function. Finally, in (c) a cron job (app_check) wakes up on a timer,

checks to see how long users from the identity table have been active,

and then writes users active longer than a threshold to a collection

(app_clock) waking up the app_clock_tx stimuli-tx function. The

grey shapes show logic that occurs outside of OINK and demon-

strate that different stimuli interface with OINK using a common

interface, a single write to a collection. The blue shapes show the

OINK stimulus logic, and the black box represents the rest of the

incentive system. Mapping these to Table 2, (a) is #9: surveyCTO,

(b) is #2: app_invite, and (c) is #3 or #5: keeping either the app

(app_clock) or sensor (sen_clock) installed for a period of time.

From Table 1 we can make a couple of observations. Broadly, we

find a majority of papers with incentive systems do not describe these

systems either at all or beyond trivial details. Of all papers found

involving human subjects, 32% contain at least a minimum amount

of information about their incentive system and 26% speak in detail.

Grouping this by communities, we see that out of the CHI and ICTD

papers (selected for our review based on titles suggesting human

studies), 84% had human subject studies. Of these, 28.5% mention

their incentive system and 42.8% have a discussion of the incentive

offered. We discover 59 papers (39%) from the set of ACM DEV

papers (which were selected for our review regardless of title) that

have some amount of human subject work 21% mentioned incentive

systems and only 6% thoroughly described incentive systems. These

are lower percentages than the nearest related work, which found

8% of work directly describing incentive systems [52].

4.2 Scenario 1: DumsorWatch Pilot
DumsorWatch is an experiment measuring the reliability of the dis-

tribution level of the AC power grid in Accra, Ghana. Participants

consent and are surveyed in-person, a mobile app is installed on

participants’ everyday-use Android smartphones, and grid reliability

sensors are installed in some households. Participants are incen-

tivized at different levels for these different activities. All incentives

for participation are provided as airtime top-ups.

4.2.1 Experiment Walkthrough. Table 2 provides an overview and

explanation of all incentive systems within the experiment, and Fig-

ure 4 demonstrates some of the stimuli in detail. Overall, the Dumsor-

Watch experiment demonstrates a real-world example of the breadth

and complexity of the incentive systems enabled by OINK.

6

The Open INcentive Kit (OINK) ICTD ’19, January 4–7, 2019, Ahmedabad, India

1 2 3 4 5 6 7 8 9

name: app_install app_invite app_behavior sen_install sen_behavior sen_collect debug FO_manual survey

stimulus-tx: first_open app_invite app_clock sen_query sen_clock sen_pick debug FO_manual surveyCTO

fraud detection: user_thresh user_thresh none none none user_thresh none user_thresh, FO_thresh user_thresh, FO_thresh

payment: Korba Korba Korba Korba Korba Korba none SMS Korba

stimulus-rx: first_open app_invite app_clock sen_query sen_clock sen_pick debug FO_manual surveyCTO

alarm: email email email email email email email email email

Table 2: The DumsorWatch experiment incentive systems described by the OINK vocabulary. Each column is a single incentive system

used in the DumsorWatch deployment. Each row is a function hosted with the FaaS architecture. The incentive systems send airtime when: (1)

installing an app for the first time, (2) a user invites a friend to install the app, (3) the user keeps the app installed, (4) a sensor is installed in a

household, (5) a sensor is kept in a household, (6) a sensor is collected, (9) a survey is completed. Additionally, (7) allows for debugging and

(8) lets a field officer manually transfer airtime for unanticipated reasons. The user_thresh and FO_thresh fraud detection functions ensure no

more than a maximum number transactions occur for a user or are generated by a field officer.

4.2.2 Incentive Walkthrough. We take a closer look at a single in-

centive system: app_invite (incentive system 4 in Table 2). This

incentive system transfers credit to a user when they use the Dum-

sorWatch app to invite an additional participant to download the app.

For each function we discuss its implementation and break out its

parameters, which are set by the researcher based on the specific

requirements of the incentive system.

Stimulus-TX: Firebase Invites provide a turn-key mechanism

for sending download invitations to contacts in a phone either over

email or SMS [18]. When the user triggers an invite in the app, the

DumsorWatch app writes to a Firestore collection using the Firebase

Android library [15]. An on_create trigger on this table wakes up

the app_invite stimulus-tx function. This function contains the logic

of the identity of the person receiving the incentive, the method

of transferring the incentive, the amount to pay per invite and the

threshold number of invites allowed per user.

Fraud: The fraud function detects if a user has triggered an

amount of invites greater than allowed. If this threshold is not hit,

the fraud block transfers data to the core and marks the stimulus

collection "enqueued". If the fraud function rejects a transaction, it

marks the stimulus database as “fraud” and stops the transfer of data

until manual intervention by the researcher. It then triggers an alarm
function with information about the fraud.

Core-1: The core-1 function receives a payment record and is

responsible for logging, error handling, retries, and guaranteeing

that the record will be updated upon success or failure of incentive

delivery. It has no parameters and is in all incentive systems.

Payment: This incentive system uses the Korba service to deliver

incentives. The Korba payment function is responsible for mapping

the generic payment information from OINK (whom and how much)

to the format expected by the Korba API [26]. In practice, the Korba

API exposed a limitation of the FaaS architecture. For security, Korba

requires that all payment requests come from a whitelisted IP, and

FaaS systems do not support static IPs. As a workaround, we deploy

a dedicated proxy server for OINK requests to Korba.

Core-2: The Korba API includes a callback URL to invoke the

core-2 function upon payment completion or failure. Core-2 updates

the transaction database with the API result and invokes a stimulus-rx
function. It has no parameters and is in all incentive systems.

Stimulus-rx: This function is responsible for handling the com-

pletion (or failure) of a payment function. For this incentive system,

the stimulus-rx is configured to retry up to five times, after which

point payment is paused and the alarm function is called to notify the

research team. For the app_invite incentive system we want to notify

the user that sent an invite that their payment has been disbursed,

so the stimulus-rx function spawns a message back to the app using

Firebase Cloud Messaging [17] to be displayed in a notification.

Alarm: The alarm function takes a message and sends an email

to the project team. Eventually, we envision a more nuanced set of

alarms, with varying priorities and mechanisms.

4.2.3 Other Incentive Systems in DumsorWatch. We briefly discuss

parts of the other incentive systems in DumsorWatch, each of which

is shown in Table 2. In (1) the stimulus-tx function first_open trig-

gers when an app is first installed. The fraud detection function

user_thresh only allows a user to receive a “first install” incentive

once by looking at historic data on the user. The payment function

Korba uses the Korba Payment API to send airtime topup [26]. On

a successful payment response from the Korba API, the first_open

stimulus-rx function sends a confirmation message to back to the

app. The alarm function email sends an email if any part of this

chain fails. (3) and (6) both use cron-jobs to pay incentives after

users have kept either the app or the sensor installed for a period of

time. (7) shows a configuration that allows for the ad-hoc manual

transfer of an incentive in a principled manner, ensuring that this

transfer is logged. (8) and (9) use two fraud-detection functions; one

that checks the recipient and one that checks to behavior of the field

officer (i.e. don’t let a field officer report more than N surveys a

day). Finally (8) demonstrates how a field officer can send an SMS

to create a record in OINK after manually transferring an incentive.

4.2.4 Field Performance. OINK has transferred nearly three thou-

sand incentives during three months of deployment. It has had expe-

rienced 100% uptime. Further, it has proven to be fault resilient in

other ways, with the alarm functions letting the team know quickly

when there are problems (a common problem turns out to be the

reliability of the Korba API) by sending emails with a targeted error

message and an index to trace the lower-level logs. Over the course

of the deployment there have been multiple reasons to audit partic-

ular payments, each of which OINK has alerted the research team

about and provided sufficient logs to address. The research group is

interdisciplinary and includes an graduate student in economics, who

has been able to interact with OINK for day-to-day management

activities. An upcoming large-scale DumsorWatch experiment will

continue to use OINK for incentives.

7

ICTD ’19, January 4–7, 2019, Ahmedabad, India N. Klugman et al.

Figure 5: Incentive System from “A Feasibility Study of an in-
the-wild Experimental Public Access WiFi network” [48]. One

design using OINK to the support the incentive system described

in [48], which transfers vouchers to participants based on the amount

of WiFi bandwidth they share.

4.3 Scenario 2: A Paper from the ACM DEV
Literature

We infer the design of an incentive system from the description in

“A Feasibility Study of an in-the-wild Experimental Public Access

WiFi network” [48]. This paper explores constraints in providing

free public WiFi network — created by recruiting participants to

sharing their private broadband connections — in a low income

neighborhood in a medium-sized British city. We choose this paper

from our survey of incentive systems because it contains the most

complicated incentive system we were able to find. Figure 5 shows

our mapping of this incentive system to OINK. The authors describe

their incentive system as follows:

For their time and the inconvenience, participants were

offered compensation in the form of shopping vouch-

ers. . . The size of compensation was scaled in line with

the inconvenience suffered: sharers who made their

broadband available to others. . . received higher com-

pensation (100 pounds) than those citizens who simply

used the. . . service (50 pounds).

4.3.1 Incentive Walkthrough. One possible incentive system design

supporting this work imagines a web-form as a stimuli. A field

officer enters the participant ID, their ID, if a participant shared

their broadband, and how much they shared. When the web-form

is submitted, it generates a HTTP POST, which OINK receives

using a stimulus-tx function and passes to the payment function. The

payment function then generates a SMS message to the field officer

with the amount of voucher to transfer. To finish, the field officer

enters the participant ID, their ID, and whether the incentive was

transferred into the web-form. On submit, OINK receives another

HTTP POST using a stimulus-rx function and marks the transaction

complete. This full incentive system is shown in Figure 5.

4.3.2 What Could OINK Have Added? This paper does not talk

about incentive management. We imagine a basic fraud function to

ensure that no user is paid twice and an alarm function that sends an

email if the transfer of incentives fails or if fraud is detected.

OINK allows for higher frequency payments than the authors used.

For example, the experiment only paid people at the end. Perhaps

multiple midpoint payments would have improved participation

rates by generating periodic reinforcement of good behavior [5, 12].

Similarly, OINK allows for higher resolution stimuli. For example,

the experiment also only had two voucher levels; more incentive

levels would allow the exploration of whether a incentive level within

reason exists that would lead to a non-linear increase of users willing

to provide public access WiFi [12, 58].

5 DISCUSSION AND FUTURE WORK
5.1 Architecture Limitations
5.1.1 New Features Require Custom Code. Stimuli and payments re-

quire a fair amount of software development to first be incorporated

into OINK, which will lead to technical hurdles for early adopters.

For example, the app-invite described in Table 2 contains over a

hundred lines of code written specifically for that stimulus. Sim-

ilarly, the Korba payment function took considerable engineering

effort learning and debugging with the Korba API. We imagine that

as OINK matures, a set of templates will emerge to simplify this

process. To bootstrap this, we provide example stimuli, payment,

fraud, and alarm functions in the publicly available codebase that

demonstrate our best practices. A partial list of these include a Surv-

eyCTO stimuli [54], a Google Analytics stimuli [19], a SMS based

stimuli, a manual stimuli, a manual payment, a Korba payment [26],

and an email alarm. OINK is architected such that once this work

has been done, these functions can be shared with a community to

be reused across experiments with minimal reconfiguration.

5.1.2 Static IPs and Whitelisting. None of the three commercial

FaaS services currently provide a static IP service, although it is

a commonly requested feature [10]. This is a problem when using

third party APIs that use whitelisting in their security systems. For

our OINK implementation of the Korba API (which uses whitelists),

we configure the payment function to call a whitelisted server rather

than the Korba API directly. This server then forwards the request to

the Korba API and the response back to OINK. Requiring an always

on whitelisted proxy server violates a true serverless architecture.

5.1.3 Latency. All three FaaS providers have latency guarantees in

milliseconds, which could be too slow for some applications.

5.1.4 Infinite Loops. None of the three FaaS providers have explicit

protection against infinite loops created by functions that call them-

selves. Some protection is provided by a hard limit in the number of

functions that can be run in a unit of time, but this can lead to unex-

pectedly high FaaS costs. While this is a danger, it can be protected

against with careful software development and testing.

5.2 Incentive Systems As Their Own Intervention
5.2.1 Communicating Incentive System Design Pa�erns. The argu-

ment can be made that because incentive systems can impact the

results of an experiment, each experiment that involves incentives

should report the design of their system [52]. In our literature review

we find that only 30% of papers include descriptions. Perhaps the

barrier towards including more incentive system descriptions will

be lowered by our definition of a standard vocabulary to describe

incentive systems. Or, perhaps, OINK could export language-based

descriptions of the incentive systems running in an experiment to be

trivially included in the literature.

Similarly, Computer Science has been working towards adherence

to Institutional Review Board (IRB) approval as a requirement for

publication [13]. We aim to work with different IRB’s to establish

an method of automatically exporting descriptions of experiments

designed using OINK in a standardized language-based format that

could be presented as part of an IRB protocol.

8

The Open INcentive Kit (OINK) ICTD ’19, January 4–7, 2019, Ahmedabad, India

5.2.2 Experimental Design. Both by increasing the resolution of

stimuli and by allowing tighter control of the frequency of incentive

transfer, OINK could enable previously difficult to conduct experi-

ments. For example, if a researcher was interested in incentivizing a

user to check their blindspots more while driving, OINK could allow

stimuli from an eye tracker. Or, a researcher could study how incen-

tives influence behavior over the course of a day by using OINK

to provide different amounts of credit for the same action over the

course of the day. Programmers could generate code with relative

ease implementing either of these examples, but OINK would allow

people less comfortable coding to run these experiments.

5.2.3 Simulation. The principled implementation of an incentive

system opens up an opportunity for tools to be developed that allow

for the quick simulation and iteration of incentive systems. These

tools could be helpful to scope different experimental designs when

faced with budgetary constraints.

5.2.4 Incentive System Research. Many crowd-sourcing works ex-

plore incentive systems design to attract and hold crowds of specific

sizes or expertise [59]. OINK can ease the implementation and eval-

uation of these novel incentive systems.

5.3 Other Uses for OINK
OINK can be extended to many different domains. For example,

OINK could distribute bonuses at a company by using key perfor-

mance indicators as a stimuli function, and payroll as a payment
function. It could be used to track non-tangible incentives using a

design where a public health worker uses OINK to email words of

encouragement every time a patient arrives at a clinic on time by

using the arrival time as a stimuli function, and an email service as

a payment function. Or, it could be used for non-human scientific

studies by dispensing a food when a button is pressed (a common

incentive when studying animals [29, 45, 47]) with a button press as

a stimuli function and actuator control as a payment function.

5.4 Future Work
5.4.1 Full Release. OINK is in an alpha state; the mature parts of the

implementation are those required to support the DumsorWatch de-

ployment. It is complete enough for experienced computer scientists

to deploy, but not yet a turn-key solution for domain scientists.

5.4.2 Community. To minimize development effort, OINK users

should have access to multiple pre-implemented functions that sup-

port the majority of incentive systems. Some functions are provided

in the OINK code base, but many more will have to be implemented.

We plan on hosting OINK tutorials to attract a community of early

adopts to contribute to this effort.

5.4.3 Usability Testing. The OINK system has been designed based

on input from by a small group of researchers. We will seek usability

feedback from larger and more diverse groups of users.

5.4.4 Cross-community Literature Review. OINK aims to be a tool

for many different scientific communities. It has been implemented

to support the communities we are most familiar with. However, we

expect branching out will reveal edge cases not previously encoun-

tered, potentially requiring revisions to the OINK architecture and

our incentive system vocabulary.

5.4.5 Expansions. We enumerate a list of potentially useful exten-

sions for OINK left for future development. Possible stimuli expan-

sions include libraries that respond to events on mobile devices [3,

18, 33], web user interfaces triggered by user interaction [20], and

events generated from data-streams collected by sensors [43]. Possi-

ble payment expansions include support for different mobile money

APIs [6, 44, 51, 53], non-monetary non-tangible incentives such

as sending a supportive email [35, 52], or non-monetary tangible

incentives such as releasing food to an animal [45, 46]. Possible

alarm expansions include services that generate emails [35], SMS

messages [56], and graphical displays [23]. Possible fraud expan-

sions include machine learning services to detect anomalies [32] or

provide methods for additional authentication [57].

One notable external service, especially for alarms and stimuli, is

IFTTT, which allows for the graphical construction of applets that

incorporate multiple APIs [42]. For example, IFTTT can automate

the configuration of a system that sends an HTTP POST packet when

a phone enters a location. This HTTP POST could then be used as an

OINK stimulus to trigger an incentive, allowing for construction of

a complicated incentive system with writing minimal (if any) code.

Similarly, IFTTT can respond to incoming web traffic, allowing

OINK alarms to integrate easily with third-party APIs.

5.4.6 Implementation Using Other FaaS Implementations. There

are three major FaaS providers who could support OINK [2, 16,

31]. A researcher using services from one cloud may want to run

OINK in that same environment. Porting OINK to different FaaS

environments remains future work.

6 CONCLUSIONS
Incentive systems are critical to human subjects research, often

impacting the results of the experiments themselves. Their architec-

tures, however, are not well discussed in the literature, and current

incentive systems are complicated to construct, difficult to scale, and

limited without integration with a large number of stimuli and pay-

ment APIs. We claim that these challenges impede human subjects

research. To address this problem we present the Open INcentive Kit

(OINK), a software system that provides out-of-the-box automation,

autogeneration, scalability, security, and accountability for incen-

tive management. We believe that OINK can add structure to the

incentive design process, potentially leading to broad adoption by

human subjects researchers. This enables incentive systems that can

be shared and reused across a community, ultimately modernizing

this critical component of human subjects research.

7 ACKNOWLEDGMENTS
This work was supported in part by the Development Impact Lab

(USAID Cooperative Agreement AID-OAA-A-13-00002), part of

the USAID Higher Education Solutions Network. We thank Joshua

Adkins for his technical guidance, Meghan Clark, Zakir Durumeric,

William Huang, and Lane Powell for their edits on this paper, Da

Seglah and Nana Bonku Eshun for their technical support with Korba,

Kwame Abrokwah, Susanna Berkouwer, and Catherine Wolfram for

being early adopters of OINK, the anonymous reviewers for their

insightful feedback and our anonymous shepherd for their guidance.

9

ICTD ’19, January 4–7, 2019, Ahmedabad, India N. Klugman et al.

REFERENCES
[1] Amazon. 2018. Amazon Mechanical Turk. https://www.mturk.com/. (2018).

(Accessed on 07/22/2018).

[2] Amazon. 2018. AWS Lambda – Serverless Compute – Amazon Web Services.

https://aws.amazon.com/lambda/. (2018). (Accessed on 02/28/2018).

[3] Amazon. 2018. AWS Mobile. https://aws.amazon.com/mobile/. (2018). (Accessed

on 03/02/2018).

[4] Amazon. 2018. Document History - AWS Lambda. https://docs.aws.amazon.com/

lambda/latest/dg/history.html. (2018). (Accessed on 03/02/2018).

[5] Colin F Camerer and Robin M Hogarth. 1999. The effects of financial incentives

in experiments: A review and capital-labor-production framework. Journal of risk
and uncertainty (1999).

[6] Indian Governement Cashless India. 2018. Unified Payments Interface (UPI).

http://cashlessindia.gov.in/upi.html. (2018). (Accessed on 03/02/2018).

[7] Rohit Chaudhri, Waylon Brunette, Mayank Goel, Rita Sodt, Jaylen VanOrden,

Michael Falcone, and Gaetano Borriello. 2012. Open Data Kit Sensors: Mobile

Data Collection with Wired and Wireless Sensors. In Proceedings of the 2nd ACM
Symposium on Computing for Development. ACM, 9.

[8] PCI Security Standards Council. 2018. Official PCI Security Standards Council

Site. https://www.pcisecuritystandards.org/. (2018). (Accessed on 03/02/2018).

[9] Robin P Cubitt, Chris Starmer, and Robert Sugden. 1998. On the validity of the

random lottery incentive system. Experimental Economics 1, 2 (1998), 115–131.

[10] James Daniels. 2017. Google Cloud Functions static IP. https://groups.google.com/

forum/#!topic/firebase-talk/o9Br8GtYBN4. (2017). (Accessed on 03/02/2018).

[11] Committee for Protection of Human Subjects. 2017. Compensation of Research

Subjects. https://cphs.berkeley.edu/compensation.pdf. (2017). (Accessed on

02/28/2018).

[12] Lin Gao, Fen Hou, and Jianwei Huang. 2015. Providing long-term participation

incentive in participatory sensing. In Computer Communications (INFOCOM),
2015 IEEE Conference on. IEEE, 2803–2811.

[13] Simson L Garfinkel and Lorrie F Cranor. 2010. Institutional review boards
and your research: a proposal for improving the review procedures for research
projects that involve human subjects and their associated identifiable private
information. Technical Report. Naval Postgraduate School.

[14] Uri Gneezy, Stephan Meier, and Pedro Rey-Biel. 2011. When and why incentives

(don’t) work to modify behavior. Journal of Economic Perspectives 25, 4 (2011),

191–210.

[15] Google. 2018. Cloud Firestore. https://firebase.google.com/docs/firestore/. (2018).

(Accessed on 03/01/2018).

[16] Google. 2018. Cloud Functions. https://cloud.google.com/functions/. (2018).

(Accessed on 02/28/2018).

[17] Google. 2018. Firebase Cloud Messaging. https://firebase.google.com/docs/

cloud-messaging/. (2018). (Accessed on 03/01/2018).

[18] Google. 2018. Firebase Invites. https://firebase.google.com/docs/invites/. (2018).

(Accessed on 03/01/2018).

[19] Google. 2018. Google Analytics Solutions - Marketing Analytics & Measurement.

https://www.google.com/analytics/#?modal_active=none. (2018). (Accessed on

03/02/2018).

[20] Google. 2018. Google Forms App Script. https://developers.google.com/apps-

script/reference/forms/. (2018). (Accessed on 03/02/2018).

[21] Google. 2018. Google Scholar. https://scholar.google.com/. (2018). (Accessed on

03/02/2018).

[22] Christine Grady. 2005. Payment of clinical research subjects. The Journal of
Clinical Investigation 115, 7 (2005), 1681–1687.

[23] Grafana. 2018. Grafana - The open platform for analytics and monitoring. https://

grafana.com/. (2018). (Accessed on 03/02/2018).

[24] Carl Hartung, Adam Lerer, Yaw Anokwa, Clint Tseng, Waylon Brunette, and

Gaetano Borriello. 2010. Open Data Kit: Tools to Build Information Services

for Developing Regions. In Proceedings of the 4th ACM/IEEE international
conference on information and communication technologies and development.
ACM, 18.

[25] Matthew Jadud. 2016. IRB Reviews Required. (2016). https://doi.org/10.1145/

2993223.2993229

[26] Korba. 2018. Korba - Our Lives Simplified. http://korbaweb.com/library. (2018).

(Accessed on 03/01/2018).

[27] Iordanis Koutsopoulos. 2013. Optimal incentive-driven design of participatory

sensing systems. In Infocom, 2013 proceedings ieee. IEEE, 1402–1410.

[28] Stanley Lippert. 1968. A comprehensive approach to human factors in developing

countries. Human Factors 10, 6 (1968), 649–662.

[29] Margaret S Livingstone, Warren W Pettine, Krishna Srihasam, Brandon Moore,

Istvan A Morocz, and Daeyeol Lee. 2014. Symbol addition by monkeys provides

evidence for normalized quantity coding. Proceedings of the National Academy
of Sciences 111, 18 (2014), 6822–6827.

[30] Edwin A Locke. 1968. Toward a theory of task motivation and incentives. Orga-
nizational behavior and human performance 3, 2 (1968), 157–189.

[31] Microsoft. 2018. Azure Functions–Serverless Architecture. https://azure.microsoft.

com/en-us/services/functions/. (2018). (Accessed on 02/28/2018).

[32] Microsoft. 2018. Azure Machine Learning Anomaly Detection API | Mi-

crosoft Docs. https://docs.microsoft.com/en-us/azure/machine-learning/team-

data-science-process/apps-anomaly-detection-api. (2018). (Accessed on

09/30/2018).

[33] Microsoft. 2018. Working with the App Service Mobile Apps managed client

library. https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-

mobile-dotnet-how-to-use-client-library. (2018). (Accessed on 03/02/2018).

[34] Phil Nash. 2018. A set of useful Twilio Functions. https://github.com/philnash/

useful-twilio-functions. (2018). (Accessed on 03/01/2018).

[35] Nodemailer. 2018. Nodemailer. https://nodemailer.com/about/. (2018). (Accessed

on 03/01/2018).

[36] Peoples Bank of China. 2018. Peoples Bank of China Issues Barcode and QR

Code Payment Rules. http://www.pbc.gov.cn/english/130721/3456052/index.html.

(2018). (Accessed on 03/02/2018).

[37] Department of Health and US Government Human Services, Office of Inspec-

tor General. 2000. Recruiting Human Subjects: Sample Guidelines for Practice

(OEI-01-97-00196; 6/00). https://oig.hhs.gov/oei/reports/oei-01-97-00196.pdf.

(2000). (Accessed on 03/02/2018).

[38] Central Bank of Kenya. 2005. Kenya Electronic Payments and Settlement Sys-

tem (KEPSS) Rules and Procedures. https://www.centralbank.go.ke/wp-content/

uploads/2016/08/KepssRules1.pdf. (2005). (Accessed on 03/02/2018).

[39] University of Massachusetts Research Administration and Compliance. 2018. IRB

Guidelines | Research and Engagement | UMass Amherst. https://www.umass.

edu/research/compliance/human-subjects-irb/guidance. (2018). (Accessed on

03/02/2018).

[40] OpenDataKit. 2018. Open Data Kit - Deployments. https://opendatakit.org/about/

deployments/. (2018). (Accessed on 03/01/2018).

[41] OpenMapKit. 2018. OpenMapKit Website. http://openmapkit.org/. (2018). (Ac-

cessed on 03/01/2018).

[42] Steven Ovadia. 2014. Automate the internet with “if this then that” (IFTTT).

Behavioral & social sciences librarian 33, 4 (2014), 208–211.

[43] Particle. 2018. Particle Guides | Webhooks. https://docs.particle.io/guide/tools-

and-features/webhooks/. (2018). (Accessed on 03/02/2018).

[44] PayPal. 2018. Creating and managing NVP/SOAP API credentials. https://

developer.paypal.com/docs/classic/api/apiCredentials/?mark=API%20security.

(2018). (Accessed on 03/02/2018).

[45] Irene M Pepperberg and Ken Nakayama. 2016. Robust representation of shape in

a Grey parrot (Psittacus erithacus). Cognition 153 (2016), 146–160.

[46] petnet. 2018. Petnet.Io Smartfeeder - The SmartFeeder feeds your pet the

right amount at the right time, automatically! https://www.welcome.ai/products/

hardware-iot/petnet-io-smartfeeder. (2018). (Accessed on 09/30/2018).

[47] Maria Elena Miletto Petrazzini. 2014. Trained quantity abilities in horses (Equus

caballus): A preliminary investigation. Behavioral Sciences 4, 3 (2014), 213–225.

[48] Arjuna Sathiaseelan, Richard Mortier, Murray Goulden, Christian Greiffenhagen,

Milena Radenkovic, Jon Crowcroft, and Derek McAuley. 2014. A feasibility study

of an in-the-wild experimental public access wifi network. In Proceedings of the
Fifth ACM Symposium on Computing for Development. ACM, 33–42.

[49] Peter D Schellie. 1979. Electronic Fund Transfer Act. The Business Lawyer
(1979), 1441–1452.

[50] Eleanor Singer and Cong Ye. 2013. The use and effects of incentives in surveys.

The ANNALS of the American Academy of Political and Social Science 645, 1

(2013), 112–141.

[51] Square. 2018. Square Connect API Documentation. https://docs.connect.squareup.

com/api/oauth#credentials. (2018). (Accessed on 03/02/2018).

[52] RG Stovel, S Ginsburg, L Stroud, RB Cavalcanti, and LA Devine. 2018. Incentives

for recruiting trainee participants in medical education research. Medical teacher
40, 2 (2018), 181–187.

[53] Stripe. 2018. Stripe API Reference. https://stripe.com/docs/api#authentication.

(2018). (Accessed on 03/02/2018).

[54] SurveyCTO. 2018. Homepage. https://www.surveycto.com/. (2018). (Accessed

on 07/22/2018).

[55] R Core Team et al. 2013. R: A language and environment for statistical computing.

(2013).

[56] Twilio. 2018. Twilio - Communication APIs for SMS, Voice, Video and Authenti-

cation. https://www.twilio.com/. (2018). (Accessed on 03/02/2018).

[57] Twilio. 2018. Two Factor Authentication for Identity Management via SMS

or Voice. https://www.twilio.com/use-cases/two-factor-authentication. (2018).

(Accessed on 09/30/2018).

[58] Dale Whittington, John Briscoe, Xinming Mu, and William Barron. 1990. Esti-

mating the willingness to pay for water services in developing countries: A case

study of the use of contingent valuation surveys in southern Haiti. Economic
development and cultural change 38, 2 (1990), 293–311.

[59] Xinglin Zhang, Zheng Yang, Wei Sun, Yunhao Liu, Shaohua Tang, Kai Xing,

and Xufei Mao. 2016. Incentives for mobile crowd sensing: A survey. IEEE
Communications Surveys & Tutorials (2016).

[60] Xinglin Zhang, Zheng Yang, Zimu Zhou, Haibin Cai, Lei Chen, and Xiangyang

Li. 2014. Free market of crowdsourcing: Incentive mechanism design for mobile

sensing. IEEE transactions on parallel and distributed systems (2014).

10

https://www.mturk.com/
https://aws.amazon.com/lambda/
https://aws.amazon.com/mobile/
https://docs.aws.amazon.com/lambda/latest/dg/history.html
https://docs.aws.amazon.com/lambda/latest/dg/history.html
http://cashlessindia.gov.in/upi.html
https://www.pcisecuritystandards.org/
https://groups.google.com/forum/#!topic/firebase-talk/o9Br8GtYBN4
https://groups.google.com/forum/#!topic/firebase-talk/o9Br8GtYBN4
https://cphs.berkeley.edu/compensation.pdf
https://firebase.google.com/docs/firestore/
https://cloud.google.com/functions/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/invites/
https://www.google.com/analytics/#?modal_active=none
https://developers.google.com/apps-script/reference/forms/
https://developers.google.com/apps-script/reference/forms/
https://scholar.google.com/
https://grafana.com/
https://grafana.com/
https://doi.org/10.1145/2993223.2993229
https://doi.org/10.1145/2993223.2993229
http://korbaweb.com/library
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/apps-anomaly-detection-api
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/apps-anomaly-detection-api
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-dotnet-how-to-use-client-library
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-dotnet-how-to-use-client-library
https://github.com/philnash/useful-twilio-functions
https://github.com/philnash/useful-twilio-functions
https://nodemailer.com/about/
http://www.pbc.gov.cn/english/130721/3456052/index.html
https://oig.hhs.gov/oei/reports/oei-01-97-00196.pdf
https://www.centralbank.go.ke/wp-content/uploads/2016/08/KepssRules1.pdf
https://www.centralbank.go.ke/wp-content/uploads/2016/08/KepssRules1.pdf
https://www.umass.edu/research/compliance/human-subjects-irb/guidance
https://www.umass.edu/research/compliance/human-subjects-irb/guidance
https://opendatakit.org/about/deployments/
https://opendatakit.org/about/deployments/
http://openmapkit.org/
https://docs.particle.io/guide/tools-and-features/webhooks/
https://docs.particle.io/guide/tools-and-features/webhooks/
https://developer.paypal.com/docs/classic/api/apiCredentials/?mark=API%20security
https://developer.paypal.com/docs/classic/api/apiCredentials/?mark=API%20security
https://www.welcome.ai/products/hardware-iot/petnet-io-smartfeeder
https://www.welcome.ai/products/hardware-iot/petnet-io-smartfeeder
https://docs.connect.squareup.com/api/oauth#credentials
https://docs.connect.squareup.com/api/oauth#credentials
https://stripe.com/docs/api#authentication
https://www.surveycto.com/
https://www.twilio.com/
https://www.twilio.com/use-cases/two-factor-authentication

	Abstract
	1 Introduction
	1.1 OINK Requirements

	2 Background
	2.1 Why Do Incentive Systems Matter?
	2.2 Incentive Systems in the Literature
	2.3 Incentive System Requirements and Policy
	2.4 Bringing IT to the Scientific Method

	3 Design and Implementation
	3.1 Incentive System Vocabulary
	3.2 System Architecture

	4 Evaluation
	4.1 Incentive Systems in the Wild
	4.2 Scenario 1: DumsorWatch Pilot
	4.3 Scenario 2: A Paper from the ACM DEV Literature

	5 Discussion and Future Work
	5.1 Architecture Limitations
	5.2 Incentive Systems As Their Own Intervention
	5.3 Other Uses for OINK
	5.4 Future Work

	6 Conclusions
	7 Acknowledgments
	References

