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ABSTRACT
Network connectivity is often one of the most challeng-
ing aspects of deploying sensors. In many countries, cel-
lular networks provide the most reliable, highest bandwidth,
and greatest coverage option for internet access. While this
makes smartphones a seemingly ideal platform to serve as a
gateway between sensors and the cloud, we find that a device
designed for multi-tenant operation and frequent human in-
teraction becomes unreliable when tasked to continuously
run a single application with no human interaction, a some-
what counter-intuitive result. Further, we find that economy
phones cannot physically withstand continuous operation,
resulting in a surprisingly high rate of permanent device
failures in the field. If these observations hold more broadly,
they would make mobile phones poorly suited to a range of
sensing applications for which they have been rumored to
hold great promise.
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1 INTRODUCTION
This paper presents our experiences with a four-month de-
ployment of Android phone-based cellular gateways in Zanz-
ibar, Tanzania. The deployment explored the feasibility of an
accurate, inexpensive, and real-time AC power measurement
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system built around a commercial off-the-shelf (COTS) plug
load power monitor and smartphone, shown in Figure 1. This
work highlights the experiences, lessons learned, and empiri-
cal evaluation of the viability of using COTS Android phones
as gateways for sensor deployments in the real world.

Cellular networks provide a global, low-cost, reliable, and
high-bandwidth network backhaul that is ideally suited for
the data collection, maintenance, and operational needs of
remote sensor nodes [10, 23]. Unfortunately, for many appli-
cations, sensor nodes are not able to directly connect to a
cellular network. Cellular modems draw considerable power,
add monetary cost, impose form factor constraints, and in-
crease implementation complexity. Additionally, they require
a SIM card, which must be registered and maintained with a
cellular network provider or virtual network operator. When
per-node access to a cellular network is not a viable option, a
gateway architecture allows multiple sensor nodes to access
a cellular network by connecting to a single cellular gateway
via a short-range, lower-energy, and lower-cost communica-
tions link such as WiFi or Bluetooth Low Energy [16].

Smartphones are attractive as gateways because they con-
nect to the cellular network and offer a rich application plat-
form, powerful processors, WiFi and Bluetooth radios, large
storage capabilities, complementary integrated sensors, over-
the-air updates, and a well-known and multilingual user in-
terface, all with a price point only achievable at scale. Further,
contract-enabled upgrades and rapid market growth have
resulted in potentially gateway-capable phones sitting un-
used and unrecycled [11, 13, 27]. Repurposing smartphones
as gateways could extract value from hundreds of millions
of devices currently considered to be e-waste [28].
Unfortunately, our experience suggests that many of the

expected benefits from building a phone-based gateway are
either unobtainable or difficult to achieve in practice. Is-
sues arise from the fundamental tension of converting a
general-purpose, user-facing platform into a single-purpose,
remotely-supervised device. Android optimizations, like au-
tomatic process termination, which improve the normal user
experience, are problematic for long-running gateway apps.
Ensuring unsupervised recovery after failures is difficult on
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Figure 1: SystemArchitecture.A commercial off-the-shelf
plug-load powermeter (WiTenergy E110) uses an unmodified
Android phone (Samsung J1 Ace running Android 4.4.4) in 16
households in Zanzibar, Tanzania. A gateway app connects
to the power meter over Bluetooth Low Energy and forwards
the power data from the sensor to a cloud server. The gateway
app also appends metadata such as GPS, system time, sensor
ID, and gateway software version. The phone is encased in a
plastic box and the system runs unattended.

a platform that assumes the existence of a user to initiate
actions and respond to prompts. Since most phone users
have a small number of devices which they manage directly,
infrastructure to manage small cellular fleets can be limited,
expensive, and dependent on the newest versions of a mobile
OS [8, 22, 24]. Moreover, the challenges of simply keeping
a cellular phone connected to a cellular network are non-
trivial. We also encounter other significant issues, including
bugs in the Android operating system (particularly the Blue-
tooth Low Energy stack) and physical failures of Android
hardware. As a result, we conclude that the benefits of us-
ing COTS Android devices may not outweigh the costs of
tricking Android into supporting long-running, always-on
applications with no human interaction.
Even with these experiences, we are confident that cel-

lular networks will remain a critical backhaul for sensing
at scale. Dedicated cellular gateway hardware, such as the
emerging class of advanced multi-radio routers [1] provide a
path to support economical sensors and provide them with
global connectivity. Smartphone sensing applications have
also been successful when they work inside their host plat-
form’s intended multi-tenant design. For example, augment-
ing daily usage phones with sensing applications, such as
those for wearable fitness trackers, has been widely com-
mercially adopted [4]. Rich and well-supported application
programming environments have not existed historically on
gateways; however, environments like the ArmMbed IoT De-
vice Platform [20] and the Particle Device OS and Cloud [29]
may soon close this gap.

We conclude by identifying high-level Android changes
that would free discarded phones from the limitations of
user-centric, multi-tenant design. These changes could be
distributed using existing channels, allowing abandoned
phones across the world to be more easily repurposed as
single-tenant application gateways for the next generation
of sensor networks.

2 RELATEDWORK
Academic and commercial projects alike have successfully
leveraged smartphones as gateways [3, 4, 12, 15, 21]. For
example, the Pogo middleware project was deployed for 24
days on Android 2.1 and allowed phones to be more eas-
ily used as always-on sensors [3]. Similarly, Cenceme was
deployed for 21 days on the Nokia 95 platform to perform
continuous sensing and activity classification [21]. Piggy-
back Crowd Sensing ran for 25 days as a background system
service on unspecified Android phones [19].

However, these applications have frequently operated un-
der the assumption of tight association between a phone
and a human, depending on the user to closely monitor and
maintain the application’s health. In 2012, Beschastnikh et.
al. proposed recycling smartphones under a loose associa-
tion paradigm [2], which relaxes the assumption of frequent
interactions between the human and the phone. In a loose
association context, phones are mostly stationary, and apps
are continuously-running, unsupervised, and characterized
by machine-to-machine interactions. Repurposing old smart-
phones as long-running gateways would provide new life
to abandoned hardware and keep potentially hundreds of
millions of phones from becoming toxic e-waste.

Priorwork has not evaluated the feasibility of using phones
as gateways under the assumption of loose association. Pogo,
Cenceme, and Piggyback Crowd Sensing assumed each phone
would be carried on a user, and relied on that user to clear
messages and ensure that the phone continued to function.
Additionally, each application ran for only a few weeks, po-
tentially falling short of finding temporally distant failure
states that could be catastrophic in a long-running deploy-
ment. These applications also may have benefited from run-
ning on fairly immature operating systems that had not yet
begun to limit functionality of long-running processes to
optimize for user experience and privacy [31, 33, 35].
Android Things, a branch of Android that supports em-

bedded systems, may offer solutions, but is hard to port and
install, does not support OTA updates through Google Play,
and is on a less active development timeline [32]. PhoneLab
took a promising approach to supporting loose association
applications on COTS phones by modifying the Android
platform to circumvent many of the issues stemming from
OS features meant to protect the user experience, including
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garbage collection, restrictive permissions, and limited appli-
cation level APIs. Even with these modifications, PhoneLab
still relies on human intervention to overcome many types
of failure conditions, breaking loose association [26].

In contrast, we believe that this is the first work to exten-
sively report on the suitability of using stock Android to host
gateway applications on phones deployed in a loose associa-
tion context. While we did not initially set out to explore this
question, we were surprised by the degree to which the loose
association conditions of our field research fundamentally
impacted Android’s ability to function as a sensor gateway,
motivating us to share our experiences and conclusions.

3 DESIGN CONSIDERATIONS
Our exploration with phone-based sensor gateways was part
of a deployment called PlugWatch. The study investigated:

(i) how power utility customers without advanced meter-
ing infrastructure perceive distribution-level energy
reliability,

(ii) how power quality varies over time of day and as a
function of distance to a transformer,

(iii) whether a low-cost cellular meter could be a reliable
source of the data needed to answer these questions.

The PlugWatch deployment periodically sensed voltage,
frequency, current, and on/off power state at an AC plug,
and transmitted this information to a central service over
the GSM cellular network. In collaboration with the Zanz-
ibar Electricity Corporation, sixteen PlugWatch units were
deployed in two villages in Zanzibar for four months.
The PlugWatch architecture is built on a COTS Android

smartphone and a COTS plug load power meter, as shown
in Figure 1. The decision to build around a smartphone was
made with several expected benefits:

Reduce Development Time. By using a smartphone as
the primary CPU, local database, and radio, we expected to
reduce development time and costs compared to designing
custom hardware. A phone’s components have been inte-
grated at the hardware and system software level, leaving
only app composition, which benefits from mature develop-
ment tools and comprehensive OS services that expose the
device’s resources in a general-purpose manner.

Increase Reliability.Android and associated Google Ser-
vices such as the Play Store [34] and Firebase [7] offer over-
the-air updates and remote monitoring and configuration
out of the box, promising better deployment management
tools than could easily be written for a custom system.

Ease Deployment Hurdles. The interactive screen on a
smartphone gateway is conducive to debugging and verify-
ing local network connectivity. Signal strength is displayed
in the status bar, and browser apps make checking internet
connectivity as easy as opening a webpage. Additionally,

local phone shops know how to manually configure Access
Point Name (APN) settings to connect smartphones to the
internet over a cellular provider.

Contrary to our initial expectations, we find that using an
Android smartphone as a networking gateway for sensing
applications increases development time, decreases reliability,
and does not significantly reduce deployment hurdles. These
findings are discussed in Sections 5 and 6.

3.1 Requirements
The design of the PlugWatch system, including the phone-
based gateway, met a number of functional requirements:

Minimal Human Interaction. We decided to keep hu-
mans out-of-the-loop as much as possible over the course of
the deployment to reduce the burden of participation and
remove noise from incorrect human operator actions.

Reliably Long-Running. Our experiment was intended
to measure variance in voltage and power quality over the
course of many months. To do this, we designed PlugWatch
to run 24 hours a day. PlugWatch restarts the app or reboots
the phone if the app hangs, fails to receive sensor data, or is
notified of process or wireless stack failure.

Non-Obtrusive. PlugWatch was designed to be placed
into households that often had few physical barriers to sep-
arate PlugWatch from participants. Because of this, we de-
signed PlugWatch not to make noise, display lights, or other-
wise cause annoyance for the participants. We also disabled
all system sounds and vibrations in Android.

Real-Time Data Stream. Our utility partners were inter-
ested in receiving plug-load information in real time. This
would allow PlugWatch to act as a simple prototype of a
more traditional smart meter, and would let the utility exper-
iment with how they might ingest and react to this new data
stream. Further, this data stream gave us insight into the per-
formance of PlugWatch, which was helpful for deployment
management activities.

Low Budget. Our budget was modest and targeted a com-
plete per-unit system cost of approximately $100 USD. This
partially motivated our selection of what was a economical
mid-range phone available in the local geography.

4 IMPLEMENTATION DETAILS
The implementation consisted of the fully-assembled Plug-
Watch unit and the data endpoints, as described below.

4.1 PlugWatch Unit
Each PlugWatch unit was comprised of several components:
the physical connections and enclosure, the WiTenergy plug
load sensor, the phone (including the most current available
version of Android, an SD card, a SIM card, and a factory
included battery), and the PlugWatch gateway app.
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Figure 2: Plug loadmonitors andAndroid gateways be-
fore deployment. (a) TheWiTenergy plug-loadmeters plug
into an available wall outlet. (b) A phone plugs into the
WiTenergy meter via a standard 5V DC USB adapter. (c)
The cord from the adapter runs into a plastic box, which is
padded with cotton balls and screwed shut. The phone sits in
the box and runs the gateway application, forwarding data
continuously from the WiTenergy to the cloud.

4.1.1 Physical Design. To discourage unintended partic-
ipant interaction, we placed each phone in a black plastic
box. The box was filled with cotton to prevent the phone
from freely moving. Finally, we placed stickers on the box
instructing participants to not open it and screwed the box
shut. A standard 5V Micro-USB charger was connected to
the phone, run through a notch cut into the box, and plugged
into a WiTenergy E110 plug load meter. Each plug point was
taped over to reduce the likelihood of accidental disconnec-
tion. The phone, box, plug, and WiTenergy were all labeled
with a common unique ID. The pre-deployment PlugWatch
units are shown in Figure 2.

4.1.2 The PlugWatch Phone. We ran the PlugWatch app
on a Samsung J110H phone loaded with Android 4.4.4 [39].
We selected this phone because it was relatively low cost ($90
USD at time of purchase in Q4 2016), was widely available
in-country, was of mid-range quality, and had reasonable
resources for its price range (1.3 GHz, dual-core, 4 GB ROM).
These phones came with Android 4.4.2 pre-installed, and we
upgraded them to Android 4.4.4, the most current version
available for this model at the time of deployment. The phone
was packaged with an 1800 mAH EB-BJ111ABE battery [38].
We purchased a homogeneous fleet of phones to minimize
variance. Each PlugWatch phone also had an SD card for
local logging, and was logged into a Google Account with
its Play Store configured for automatic updates.
We also selected the J110H because it could be modified

to turn back on if power was restored to the phone after
the battery died. This functionality was necessary to recover
a phone after a power outage long enough to fully drain
the phone’s battery. We found after evaluating five different
models that this modification (which requires replacing the
charging image displayed when power is applied to a phone
with a script to power on the phone) works exclusively with
Samsung phones. The J110H was the least expensive Sam-
sung phone available from local stores.

Figure 3: The back of an airtime card used to add air-
time to a phone. A user scratches the card to reveal a code,
then types in an Unstructured Supplementary Service Data
(USSD) number, the # character, and the code. If the code is
accepted, the user will get a notification that the account has
received a set amount of airtime. If the user wishes to use
this airtime to connect to the internet most economically,
they enter a second USSD code and select an internet bundle,
which provides data that sunsets after a certain amount of
time. If the user has enough credit, the bundle will be pur-
chased. A user also checks their account balance via USSD.
This interface scales poorly but can be, as in Tanzania, the
only one available, making management of a large number
of cellular gateways highly labor-intensive.

We used KingoRoot [17] to root each phone. Root access
allowed us to effect the aforementioned “boot from off upon
restoration of power” behavior and enabled the PlugWatch
app to reboot the phone, which was necessary to recover
from some BLE driver failures. Finally, it allowed for us to
install ClockworkMod recovery [5], a tool that enabled a
gold-standard system image to be loaded onto each phone.
The smartphones were unlocked and could function on

any of the mobile carriers in Zanizbar. All carriers offer pre-
paid data plans in which airtime is added to a SIM as needed
and purchased as a code behind a scratch-off ticket, such
as the one shown in Figure 3. This code is then manually
entered into the phone over an Unstructured Supplementary
Service Data (USSD) interface. Then USSD is used to pur-
chase “bundles” that provide discounted rates for cellular
data bandwidth and can last from a couple hours to 60 days.
As all carriers had comparable feature sets and interfaces,
we spoke with village residents to learn which carrier had
the highest quality and most reliable service, and chose the
carrier (Halotel [43]) based on these conversations.

4.1.3 The PlugWatch App. The PlugWatch app was writ-
ten to keep an active long-running BLE connection to the
WiTenergy sensor and to regularly collect power informa-
tion from the sensor over this connection. Additionally, the
app accepted API calls from our central service, logged state,
automatically updated, sent periodic heartbeats, restarted on
crashes, and rebooted the phone when necessary. The app’s
UI was designed to be inaccessible to non-technical users,
and had much of its functionality hidden behind passwords
so that participants could not change the state of the app.
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(a) Packets forwarded over entire deployment (b) Close-up for month of January

Figure 4: Number of power measurement packets forwarded from the WiTenergy plug load meter by the Plug-
Watch app to the cloud service. The area of the crosses is proportional to the number of phones reporting any packets
each day. PlugWatch reports a power measurement at 1 Hz. Therefore, the daily theoretical maximum number of packets is
calculated as number of seconds in a day × number of phones reporting any packets during a day. After each field officer’s visit
to perform smartphone maintenance activities, the number of measurements received increased dramatically, then declined
rapidly over time. Field officers performed a number of tasks: rebooting the phone, checking its placement, re-establishing the
Bluetooth connection, installing available updates, clearing any messages, and emptying the SD card.

Exception Handling. Each Java class in PlugWatch used
the DefaultUncaughtExceptionHandler to catch all excep-
tions. On exception, a new thread would spawn and invoke a
custom restart class, passing it the exception message and
the name of the class that threw the exception. When the
restart class woke up, it would either schedule a restart of
the app or a reboot of the phone. The decisions to restart or
reboot and when to do so were based on a counter, which
allowed for a resetting backoff (i.e. app reset actions would
be increasingly delayed until a max number of resets had
occurred, at which point the phone would reboot and the
counter would start over with a minimum delay).

Remote Monitoring. To facilitate remote monitoring of
the deployment, we designed a management API into the
PlugWatch app. This API performed three functions: query-
ing state, requesting data, and manually resetting the system.
API calls could be made over both Google Cloud Messag-
ing [6] and SMS. This dual interface ensured that we could
reach the phones as long as either data services or SMS ser-
vices were online and the PlugWatch app was running.

Logs. To access in-depth system information, we main-
tained several different logs. Because Android’s system logs
are ephemeral, we implemented our own logging system,
which wrote files to an SD card on the phone. Every appli-
cation crash, incoming API message, and paired BLE MAC
address was logged. Additionally, we kept a complete local
copy of the database that contained all measurements from
the WiTenergy device. Logs were remotely accessible via
the PlugWatch API. This logging system was only available
while the PlugWatch app was running.

Staying Alive. During development, we observed that
when an app registered a background service—which is a ser-
vice that runs even when the app UI is not being displayed—
the OS would close this service after a period of time as part
of garbage collection activities. We used four techniques to
try to circumvent the automatic garbage collection process:

(i) The app periodically generated notifications in the sta-
tus bar, transforming the background service that con-
tains the BLE connection and data forwarding logic
into a foreground service that is less likely to be killed
by the OS under memory pressure [36].

(ii) The app forced the OS to keep the UI open on the
screen by restarting the app on crash and boot, dis-
abling navigation buttons, and registering callbacks
that relaunched the app whenever the UI was hidden.

(iii) A separate watchdog process spawned on first open
and periodically woke up and restarted the primary
app process if it was no longer running.

(iv) The app used Android accessibility services [30] to
catch and automatically close all dialog boxes launched
by the OS by using a heuristic of soft clicking either the
only button or the leftmost button in the pop-up. This
heuristic was sufficient to dismiss all system dialog
boxes encountered during testing.

We note that we are not the first to identify these techniques.
These methods were described in various forum posts by
developers also struggling to develop loose association ap-
plications.
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4.2 Data Endpoints
Data were sent to the cloud through HTTP POST requests
from the app. These were received by a Node.js server and
logged. Debugging information was also sent through the
Firebase Realtime Database API [7]. When the phone could
not reach the network, it queued both HTTP data and Fire-
base packets until connectivity was restored. Received mea-
surement data were stored in a PostgreSQL database and an
InfluxDB database [14], and visualized using Grafana [18].

5 EVALUATION
We evaluate PlugWatch and determine that adding human in-
teraction increased availability. We then consider the restart
and reboot rate, which was much higher than we experi-
enced during testing, and trace the logs captured from each
of these events to glean insights. Finally, we consider the
physical state of PlugWatch post-deployment and find screen
burn-in and significant swelling in the batteries.

5.1 How Did PlugWatch Perform?
We analyze performance as a function of the number of
packets sent daily. The WiTenergy sensor sends packets over
BLE at 1Hz, leading to 1,382,400 expected packets from our
fleet daily (86,400 seconds in a day × 16 phones). As seen in
Figure 4, the two highest yield days of the deployment did
not achieve even half of the theoretical maximum. When we
collected theWiTenergymeters at the end of the deployment,
the devices were functional, leading us to conclude most
failures were due to the phones. These failures were not
observed during lab tests in the US.

Variable Performance. Figure 4 shows roughly monthly
spikes in aggregate packet delivery. These correspond to
monthly field officer visits to each household to perform
maintenance tasks including rebooting the phone, checking
its placement, re-establishing the Bluetooth connection, in-
stalling available PlugWatch updates, clearing any messages,
and emptying the SD card. We would expect those in-app
routines that restart the app and reboot the phone upon er-
rors to reset the state of PlugWatch and lead to the same
increase in performance as the activities performed by field
officers. However, we did not observe this in practice.
We have not been able to explain this discrepancy based

on the logs gathered by the PlugWatch app. We only have
logs from times when PlugWatch was running, so we have
no visibility into the system state whenever the app failed
to start. This opacity is enforced by Android’s design, which
writes logs to a ring buffer that is reset on reboot.

Connectivity Management.We found management of
a cellular phone fleet more challenging than anticipated. The
cellular network provider offered no interface to manage
groups of phones or their collective data. Instead, data had

Row Error Message Reports

1 watchdog2 rebooting due to dead process 257,547

2 gridwatch.plugwatch.wit. PlugWatchService:bluetooth stack
died 108,653

3 gridwatch.plugwatch.wit. PlugWatchService:unable to start
scanning 40714

4 restarting due to timeout 30,898
5 service disconnected 28,211
6 An error occurred while executing doInBackground() 18,643
7 watchdog rebooting due to dead process 3,981

8 gridwatch.plugwatch.wit. ConnectionCheckService:restart
rebooting due to max timeout 3,836

9 Exception thrown on Scheduler.Worker thread. Add ‘onError‘
handling. 1,680

10 [memory exhausted] 398

Table 1: Errors logged locally by the PlugWatch App.
Logs are not independent and multiple errors may be logged
for the same error event. Logs are captured only when the
app is running. The most common error (Row 1) occurs when
the separate watchdog2 process finds the primary PlugWatch
process no longer running and restarts it. Rows 2 and 3
indicate errors related to the BLE stack. Row 4 indicates the
PlugWatch app timing out after failing to receive BLE packets.
Rows 5 and 6 are exceptions in the PlugWatch background
service due to implementation error. Row 7 indicates that the
watchdog running within the primary PlugWatch process
found the separate watchdog2 process no longer running and
restarted it. Row 8 is another BLE timeout error. Row 9 is
an exception in the PlugWatch background service due to
implementation error. Row 10 describes memory tension.

to be added to each phone individually through a USSD in-
terface. This posed a problem as USSD numbers do not work
remotely, requiring us to employ a human on the ground to
add data to the phones each month. Furthermore, the lack
of an interface to determine if a network was experiencing
transient failures or a if SIM card had insufficient credit made
it difficult to distinguish network failures from app failures.

PlugWatch Lifespan. By examining the top ten most
common errors logged by the PlugWatch app (see Table 1),
we find that app restarts and phone reboots occurred due to
the two app watchdogs catching dead processes, as well as
BLE stack errors, implementation errors, and timeouts be-
tween receiving packets from the WiTenergy device. These
are all behaviors that were not broadly observed in labo-
ratory testing. Further, we observe a wide distribution of
uptime across the deployment in Figure 5. The high variance
suggests that several different factors shortened lifespan,
making it hard to make strong conclusions about the real
root cause of such frequent app restarts and phone reboots.

Over the course of the deployment, the PlugWatch phones
collectively restarted the app 341,725 times and rebooted
153,719 times. An app restart event took around 1.5 seconds.
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(a) Up time per-phone with all outliers (b) Uptime per-phone with Y range near the upper quartile

Figure 5: Uptime in hours before an app restart or phone reboot. Box-and-whisker plots showing hours between app
restarts or phone reboots for: (a) the full range of hours; and (b) 0-0.5 hours. Each phone exhibits large variance in uptime,
ranging from nearly zero to over 100 hours, which renders the boxes and whiskers nearly invisible in (a). However, (b) shows
that the mean uptime for each phone was approximately 15 minutes or less. Unsupervised recovery from app crashes and phone
reboots is therefore critical for gateway applications, but we found poor support for reliable, automatic and interaction-free
recovery in Android.

A phone reboot event took an average of 1 minute and 40 sec-
onds. The total downtime was therefore approximately 4,454
hours (142 from restarts and 4,312 from reboots), or 8% of the
total deployment time (24 hours × 142 deployment days ×
16 phones). Furthermore, this does not account for the time
spent in error states before these restart and reboot events
were triggered, nor time spent in unrecoverable states.

5.2 How Did the Phones Fare Physically?
Out of the 16 PlugWatch devices, eight phones exhibited a
visibly-swollen battery by the end of the experiment (see
Figure 6). We hypothesize that battery problems led to the
sharp drop-off in packets around February 5th (see Figure 4).
The worst battery was swollen to 270% of its normal width.
Six of the batteries had swollen to the point where they had
pushed the plastic phone backing out of its setting and they
were no longer seated in the electrical contacts. We have not
identified any recall of the J110H phone or the EB-BJ111ABE
battery that suggests that these problems are model-specific.
While we did not see any battery issues during an 18-hour
heat test in the development phase, longer-term exposure to
the hot and humid deployment climate seems to have been
sufficient to cause battery swelling.

Ten of the phones experienced some degree of screen burn-
in (see Figure 6). The burned-in image was most often of
the home screen, indicating that the app was not correctly
pinning itself to the foreground (see Section 4.1.3). The dam-
age was not bad enough to make the phones unusable, but it
does significantly detract from any future user experience.

(a) Two swollen batteries. (b) Screen burn in.

Figure 6: Hardware problems discovered. (a) A battery
and a phone with its battery after deployment. Both demon-
strate swelling, and the battery in the phone has unseated
the plastic backing of the phone. (b) Screen burn-in from a
device frozen in an invalid and unrecoverable state. Notice
that the burn-in is from the home screen, not the PlugWatch
app which should have been in the foreground.

6 LESSONS LEARNED
We seek to draw some conclusions from our experience with
the PlugWatch deployment to help inform future efforts.
These lessons should be read critically. They are derived from
a single deployment of a modest number of phones, although
one that is similar in scope to related studies [3, 19, 21]. A
small team of academic researchers developed the PlugWatch
application, not professional software engineers. However,
future research systems are likely to be built by similarly-
small research teams and by domain scientists who expect,
as we initially did, that smartphone gateways would be as
successful in loose association deployments as they have
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been in tight association contexts. It is for their benefit that
we share our experiences, arguing that the current state of
deploying such systems may not align with expectations,
even for experts. Finally, we lay out a road map toward a
plausible future in which these systems are better supported.

6.1 Human Interactions are Critical
We find that despite our best efforts to liberate the phones
from human interaction, keeping humans in the loop over
the course of the experiment both drastically improved the
functionality of PlugWatch and was ultimately necessary to
keep the phones operational on the network.

Notably, monthly maintenance by field officers had a pos-
itive impact on PlugWatch’s performance. Although we are
not sure which of the interactions was key, it is clear that
the system benefited from a regular human touch. Unfortu-
nately, our design choices around independence prevented
us from taking advantage of this fact once we discovered it.
We intentionally did not design a UI that would allow partic-
ipants to troubleshoot devices themselves, did not include
participant-device interaction in our IRB application, and
screwed the phones into boxes for which the participants
likely did not have screwdrivers. These early decisions ham-
pered our ability later to change the experimental protocol
and allow participants to interact with the phones.

6.2 Physical Environment Matters
Before deploying PlugWatch, we researched how the deploy-
ment circumstancesmight affect the battery.We attempted to
find a datasheet for the battery but found nearly no informa-
tion from the manufacturer [38]. We found no sources that
described more than a slight possibility of battery swelling;
most discussions focused on the regulating circuitry in the
phone that keeps it safe from overcharging. Given this lim-
ited information, we heat-tested the system by placing a
PlugWatch phone in a oven at 120° F for 18 hours and logging
the battery temperature and capacity, as well as any system
reboot events, and found no unusual behavior. Despite this
test, we were not able to predict the effect of months spent
in the heat and humidity of Zanzibar, and the dangerous
battery-swelling that resulted presumably due, at least in
part, to these conditions.

6.3 Seek Supporting Infrastructure
There are a number of tools that might have helped with
provisioning phones, collecting debugging information, en-
suring reliable OTA updates, and remotely accepting permis-
sions. These include Google’s own enterprise mobility man-
agement (EMM) tools [8], as well as a number of third party
options [22, 24, 25, 42]. Unfortunately, the Google EMM tools

are only fully supported on Android 5.0 and would not sup-
port our deployment or the nearly half-billion phones loaded
with versions of Android pre-5.0, as Figure 7 shows [8]. We
did a shallow search for third-party options but did not ul-
timately adopt any, in part due to misguided confidence
that we would not need these services (as OTA updates are
provided by the Play Store [34], debugging information is
sent from our software, etc.), and in part due to their cost,
although free tiers with limited functionality do exist for
some services [22]. We are encouraged that many of these
tools did support our target Android API [22, 24, 25] and we
would certanly consider these tools as valuable and perhaps
indispensable for a future deployment.

6.4 SIM Management is Hard
Keeping SIM cards active on the network is a non-trivial
task largely due to the lack of supporting infrastructure from
cellular providers. There have been many calls for research
networks that change this model, although these networks
are still rare [37]. Collectively, the authors have attempted
cellular-based deployments (between 5 and 20 smartphone
or embedded devices) in five countries: the United States,
Kenya, Tanzania, Nigeria, and Ghana. We observe from these
experiences that:

(i) Purchasing SIMs in high quantities can be difficult. For
example, SafariCom in Kenya and MTN in Ghana limit
the purchase of SIMs to 10 per person. Companies may
purchase more than 10 SIMs, but only after supplying ex-
tensive documentation that requires a multi-day review.
For a deployment in Ghana, we partnered with a local
company to purchase 400 SIMs and were surprised to
learn that each SIM then had to be hand-activated by a
sales representative, a tedious and error-prone process.

(ii) SIMs may be expensive. For example, some US carriers
sell pre-paid non-contract SIM cards for much more than
other countries ($25.00 USD from T-Mobile [40] com-
pared to $0.22 USD from Airtel Tanzania [41]).

(iii) SIMs can be hard to transport. For example, we found
that FedEx and DHL have an policy against shipping
activated SIM cards out of Ghana, making it difficult to
assemble sensors out-of-country.

(iv) SIMs may be difficult to keep funded and operational.
For example, in Kenya, Tanzania, Nigeria, and Ghana,
the primary method for adding airtime and data was
scratch-off cards, shown in Figure 3. Some web APIs for
SIM management did exist, but they were not functional
or scriptable. In Kenya, Tanzania, and Ghana, we asked
multiple telecoms for help managing data on fleets of
SIMs but all tools were cumbersome, not readily available,
and not designed to support scales of hundreds of phones.
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6.5 Service Restarts Often Fail
The failure of one peripheral in a gateway should not cause
the whole system to fail. A common approach to recover
from peripheral failures is to enable the core logic to reset
or power cycle peripherals independently. Android does not
support this practice, which can be problematic.
For example, the BLE system used by PlugWatch in An-

droid 4.4.4 regularly crashed or otherwise failed to connect
and scan. In a dedicated sensor node, a reasonable solution
to these non-deterministic bugs would be to power cycle
the BLE peripheral and restart its driver when erroneous
behavior is noticed. Although the Android BLE API exposes
ways to enable and disable the BLE system, we found that
to reliably restart a BLE connection, PlugWatch had to ei-
ther restart itself or reboot the whole phone. This greatly
increased the complexity of the app and is undesirable for
many traditional sensing applications, especially on devices
that take minutes to reboot.

6.6 OS-Coupled Drivers Not Upgradable
Nearly all modern operating systems (including many em-
bedded OSs) allow for drivers to be replaced and upgraded in-
dependent of upgrading the OS kernel itself. Neither of these
practices is standard in Android, which leads to hardware not
getting critical updates to its peripheral drivers unless the
entire OS is ported to that hardware (a process that is guar-
anteed only for a relatively short period of time). Google’s
Project Treble [9], introduced in Android 8.0, attempts to ad-
dress this problem. However, this does not help non-upgrade-
eligable older phones that are already deployed.

6.7 User-Centric Design is Problematic
Recent changes to Android have made things better for
the user but worse for loosely associative sensing applica-
tions. Android 6.0 added runtime permissions, with which
a user manually approves each permission-protected func-
tion. These include many critical functions for long-running
apps, such as accessing the internet, reading phone state,
and writing to persistent memory. Android 8.0 (2017) and
Android P (2018) both change how background operations
work, limiting the OS services that can wake up an app and
the sensors a background service can access. Instead, these
versions promote a model of foreground services and define
foreground services as services that are privileged due to
users awareness of them. Ultimately, these changes improve
user experience by ensuring that long-running background
services do not take more than a fair share of the resources
and do not invade user privacy. However, in the context of re-
purposing phones as long-running gateways or sensor nodes
that do not have interactive users, these changes significantly
and artificially constrain the application space.

Figure 7: Global Android shipments from 2009 to 2017
and correspondingAndroid version number at time of
shipment. Hundreds of millions of old Android phones are
already deployed in the world. Changing the version cut-off
for reuse by even a minor version number could potentially
affect millions of phones.

6.8 You Cannot Future-Proof the Past
Even if future versions of Android were to fix all of the
Android-related problems we encountered with PlugWatch,
requiring more mature hardware or operating systems trans-
lates to abandoning billions of older phones already sold.
This not only delays the viability of smartphone gateways
until modern operating systems can penetrate the markets,
but abandons the most widely-deployed computing resource
across the globe. As Figure 7 shows, changing the cut-off for
reuse by even a minor version could result in the consign-
ment of millions of phones to landfills instead of productive
second lives as gateways.

6.9 Recommendations for the Future
In our ideal vision of the future, once a user decides to dis-
card a functional but dated smartphone, they can choose to
donate their phone’s body to science by enabling an OTA OS
upgrade to a gateway-friendly version of Android. A num-
ber of changes could potentially help enable this vision of
ubiquitous cellular gateways.
First, Android could be modified so that privileged pro-

cesses are never killed and are always restarted, permissions
are removed, logging is retained, and modal windows are
suppressed or could be programmatically handled trivially.
A default gateway app could be pre-installed that allows a
user to pick endpoints for their data.
Further, this new OS could be made available using the

existing OS OTA update mechanisms. This would allow a
user to decide to install this version of Android on their
old device using a familiar interface when they upgrade to
newer hardware. Finally, if a cellular network existed that
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white-listed phones running this version of Android, cellular
connections could be provided with a different pricing model
to the end user. Collectively, this would make reusing phone
hardware dramatically easier for many researchers.

7 CONCLUSIONS
Android smartphones are inexpensive, powerful, and ubiqui-
tous computing systems that work in nearly every country,
have a mature ecosystem for software development and dis-
tribution, support application multi-tenancy, include a rich
set of sensors and wireless interfaces, and offer global posi-
tioning and network connectivity. It would seem that they
are the perfect platform for an unimaginable array of simple
and demanding IoT applications, from sensing to perception
to wirelessly connecting peripheral devices.
And yet, like a petulant toddler, an Android smartphone

requires near constant adult supervision. Users must peri-
odically reset the devices when applications hang. Users
must manually login to the phones after a reset to launch
applications. Users must check and clear modal dialogues.
Users must regularly restart crash-prone Bluetooth stacks to
reconnect with peripherals. Users must manually upgrade
applications over cellular networks. And users must ensure
that batteries do not swell or explode from use or abuse.
Knowing these costs upfront might dissuade some from

being lured by the very tantalizing—but perhaps ultimately
unrealizable—potential of the Android smartphone platform
as self-sufficient system for long-running services. After a
year of sunk costs and lost time with Android, we gave up on
smartphones and implemented nearly identical functionality
with custom hardware in a matter of weeks, which has since
spent two months deployed in the field with far better results.
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