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Abstract—Smart grids, typically driven by smart meters,
enable the use of information and communication technologies to
collect grid status in real-time. However, while smart meters are
typically essential to the smart grid vision, many utilities globally
have not installed smart meters mainly due to technical or budget
constraints. In this paper we evaluate deployment strategies of
GridWatch, a novel crowdsourcing system to detect electricity
outages using smart phones. Using demographic, user mobility,
and outage data relevant for Nairobi, Kenya, we develop an agent-
based model (ABM) simulation to understand the factors that
optimize the deployment strategy of GridWatch in different sub-
regions of the city while maintaining high confidence of outage
detection. Our results show that outage detection improves dra-
matically with increasing density of households per transformer,
so a higher penetration of GridWatch devices is needed in areas
with sparser grids.

I. INTRODUCTION

Smart grids enable a transformative improvement in moni-
toring of the state of the generation, transmission, and distribu-
tion tiers of electricity grids. However, while smart meters are
typically a canonical component of the smart grid vision, their
deployment is uneven worldwide; while some regions have
converted entirely to smart meters, deployment has slowed
considerably in others – in the U.S., only 50% of endpoints
have smart meters, and much of the developing world has
installed few if any smart meters. To achieve the promise
of more efficient, more responsive, and less costly electricity
systems of the smart grid, we study the potential to offer smart
grid-like services without smart meters.

In particular, this work examines deployment strategies for
a system called GridWatch, which aims to enable commodity
smartphones owned by electricity customers to automatically
provide notification of electricity outages to utilities [1].
GridWatch proposes an unprecedented paradigm for mobile-
driven, crowdsourced sensing approaches for monitoring in-
frastructure systems. However, little is understood about the
density of GridWatch devices needed to accurately measure
electricity outages, and even less is understood about the
dynamics of those requirements in different settings. Further,
as deploying GridWatch at increasing penetrations seemingly
requires increasing effort and expense, we seek to understand
the minimum deployment penetration needed based on the
characteristics of each setting.

To study these topics, we examine potential deployment
strategies in the context of a real-world electricity grid in

an emerging economy. Using this novel, detailed dataset,
we apply an agent-based modeling technique to character-
ize the theoretical effectiveness of GridWatch across the 17
administrative regions that comprise Nairobi, Kenya, a city
of 4 million residents. We consider differences in population
density, grid infrastructure, and outage patterns among these
regions, and examine their resulting effects on detecting out-
ages using the GridWatch system. We intend for this study
to inform deployments of GridWatch and other mobile-based
infrastructure monitoring systems.

II. RELATED WORK

The growing penetration of mobile devices and sensors
has created unprecedented opportunities to modernize the
power system by enabling information acquisition in real-
time and from end-users. Smart grids envision a versatile
and intelligent electricity infrastructure that allows participa-
tion from end-users to achieve better resource optimization,
information services, and monitoring [2]. In particular, this
work investigates the deployment strategy of a crowdsourcing
system, GridWatch, that aims to measure the reliability of
electricity grids using smartphones. Like other crowdsourcing
systems, the number of users of GridWatch not only impacts
the robustness of detection but also the cost associated with the
deployment [3]. Clouqueur, et al. [4] address the deployment
strategy problem for sensor networks that are placed to detect
a moving target using path exposure and signal measurements.
However, our work addresses this problem for mobile users by
understanding their charging patterns and WiFi penetration for
outage detection in distribution grids.

In our previous work [5], we evaluate the deployment
strategy of GridWatch using a purely stochastic model where
we described the occurrence of power outages as a non-
homogeneous stochastic process [6]. In contrast, in this work
we use an agent-based model technique that provides more
accurate estimate of deployment penetration given that we
are able to model individual interactions instead of making
assumptions of homogeneity across the regions of study. In
addition, one of the signals used by GridWatch to attempt
to detect an outage is by monitoring sudden drops of WiFi
signals; we account for the ability of this signal to measure
outages both at a single residence as well as at nearby
residences. We consider the effects of varying penetration of
WiFi across the city, and characterize the tradeoff in outage
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Fig. 1. Map of Nairobi and its 17 administrative and geographic regions
denominated constituencies. Darker colors represent higher densities of house-
holds per transformer, and labels are provided in Table I.

estimation between higher confidence and better coverage via
varying the outage detection threshold.

Agent-based modeling (ABM) is a computational modeling
technique that describes the behavior of individual agents to
observe the results of their interactions in a complex system
[7]. This technique is widely used in engineering, social,
and natural sciences but, to our knowledge, has not been
used for this application. Existing ABM simulations related to
electricity infrastructure aim to understand the sustainability of
energy management provided by smart homes [8], market out-
comes and consumer behavior in demand response programs
[9], effects of intermittent renewable sources in electricity
markets [10]–[12], and impacts of traditional and new electric
loads such as plug-in electric vehicles in the planning and
performance of smart grids [13], [14]. It is worth noting that
most of the aforementioned work relies on the availability of
smart meter data which is either limited or entirely unavailable
in developing countries.

III. BACKGROUND

We aim to understand the features that impact the detection
of power outages by the GridWatch system. To do this, con-
sider a large and growing urban setting: Nairobi, Kenya. We
identify the feature space based on available data as provided
by the largest utility. We characterize the 17 administrative
units that constitute the county of Nairobi, Kenya based on
ranges of inter-household distance, the population density,
number of power outages in the distribution grid, and power
infrastructure density.

A. Constituencies of Nairobi

Nairobi, a city of four million residents, lies primarily within
Nairobi County which consists of 17 administrative and geo-
graphic regions denominated constituencies; these constituen-
cies are listed in Table I. We characterize densities in terms
of number of households using information from the 2009
Kenya Census and data from the Kenya National Bureau of
Statistics (KNBS) and Society for International Development

Fig. 2. Measurement of households versus outages per km2 in Table I. A
line of best fit with R2 of 0.60 shows a moderately high correlation between
household and power outage density.

(SID) [15]. Figure 1 shows a map of the constituencies of
Nairobi. Most of the population density in Nairobi is clustered
in the center of the county corresponding to the constituencies
of Mathare, Kamukunji, and Ruaraka. The Nairobi National
Park, with a very low population density, is located in the
southern part of Langata Constituency.

The densities of power distribution infrastructure and out-
ages provided for each constituency are for the period from
September 2014 to October 2015. We measure infrastructure
in terms of the number of distribution transformers available
in each region and outages using the datasets mentioned in
Section IV-A.

B. GridWatch

GridWatch is a mobile-based crowdsourcing system for
electricity grid outage and restoration measurement [1]. It uses
sensors embedded in smart phones to detect absence of power
supply. GridWatch detects an outage by observing the charging
patterns of users, detecting sudden drops of WiFi signals and
ambient lights, among other sensors.

As was mentioned in [5], even though the system enables
the detection of outages in settings with limited sensing
infrastructure in the distribution grid, GridWatch is not yet
broadly deployed. In order to account for the main techniques
GridWatch would employ to detect an electricity outage, we
incorporate the two main detection mechanisms in our model
using inter-household distance for WiFi detection and user
charging patterns across the day. These mechanisms are able
to simultaneously interact to sense outages, improving the
confidence of detection. Thus we design scenarios in our
model in which they overlap.

IV. METHODOLOGY

In this section we explain the datasets, agent-based model
approach, and the parameters of our model.
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TABLE I
METRICS PER CONSTITUENCY IN NAIROBI COUNTY, KENYA.

Constituency Households Transformers Outages Median num. Median num. Median num. % houses in range
in Nairobi (per km2) (per km2) (per km2) houses within 10 mts houses within 30 mts houses within 50 mts (within 30 mts)

Mathare (MAT) 21060 31.7 370.0 58 177 371 100
Starehe (STA) 4512 66.2 342.7 32 73 142 99

Embakasi North (EMB-N) 10943 23.6 236.4 18 53 115 99
Kamukunji (KAM) 4908 23.1 206.0 39 90 184 100

Dagoretti North (DAG-N) 2700 35.5 141.8 33 52 88 97
Ruaraka (RUA) 8382 24.6 141.3 37 114 255 99

Embakasi West (EMB-W) 4803 32.3 123.9 22 72 172 100
Embakasi South (EMB-S) 6225 34.4 96.5 94 245 533 100

Kibra (KIB) 5214 30.5 71.3 14 38 74 97
Makadara (MAK) 2558 10.9 54.1 12 28 62 98
Westlands (WES) 573 8.5 48.4 21 34 63 92

Embakasi Central (EMB-C) 4039 5.4 47.1 24 86 209 100
Dagoretti South (DAG-S) 2196 6.5 37.8 26 43 79 98

Kasarani (KAS) 579 4.7 36.2 18 47 103 96
Embakasi East (EMB-E) 753 6.8 35.7 28 57 107 97

Roysambu (ROY) 1182 8.2 27.0 30 78 170 97
Langata (LAN) 236 3.3 13.0 14 26 51 90

A. Datasets

As with our previous work [5], we use datasets for historic
outage data collected by the largest electric utility and phone
charge events using the publicly-available StudentLife dataset
[16] to model the conditions GridWatch requires to sense
power outages. Each entry in the outage data contains infor-
mation on the problematic piece of equipment; these pieces
of equipment are defined as the agents in our model. Their
probability of failure depends on the number of events of that
particular device presented in the dataset at a particular hour
of day. Using phone charge events we obtain the proportion
of users charging their phones during the course of the day.
Even though the StudentLife dataset provides good insight
about charging patterns of smartphone users in the United
States, we recognize the potential for regional differences
in user behavior and intend to collect phone charging data
from our target setting to provide a more realistic simulation
environment. Unfortunately, this information is not available.

In addition, since GridWatch measures changes in WiFi
signals, we leverage household meter locations collected by
the utility and calculate the median number of neighbors
within 10, 30, and 50 meters. We use these metrics to obtain
the proportion of households with at least one neighbor within
WiFi range. Different IEEE 802.11 standards explored [17]
define an approximate range coverage of 30 meters which
is the range we choose for this metric. Table I summarizes
the percentage of household with at least one neighbor within
a 30-meter range, median number of households within 10,
30, and 50 meters, the demographic, power infrastructure,
and outage density for each constituency. Figure 2 illustrates
the positive relationship between household versus outage
densities across all the constituencies.

B. Agent-Based Model Design

We model the occurrence of power outages in the con-
stituencies mentioned in Section III. We aim to observe the
dynamics of those outages from the perspective of each
individual problematic piece of equipment that generated

the failure and then we create possible scenarios of outage
detection using the GridWatch app.

We identify feeders and transformers in the distribution grid
as the infrastructure where the outages occur and we choose
them as the agents of the model. From the underlying datasets,
we obtain the frequency of failure across hours of day. In order
to recreate dynamics of the outages, we use this information
to calculate the probability that if an outage occurs, it matches
to a specific hour of day and agent.

We assign a set of attributes to the system and each agent
called global and local variables respectively. We define the
following global variables:

• Number of outages per hour of day. Using the outage
dataset from the utility, we separate the number of
outages that occurred inside each constituency. In turn,
we obtain the respective number of outages that occur
across the hours of day. We observe a common pattern
of higher occurrence of outages during the peak hours
across all constituencies.

• Proportion of users charging their phones (Pch). Based
on the StudentLife Dataset, we use this parameter to
calculate the probability that a GridWatch user reports an
outage when the phone is plugged in and the number of
households that are not charging their phones at a specific
hour of the day.

• Proportion of GridWatch users (Pgw). We vary this pa-
rameter to obtain the minimum optimal proportion of
users that allow us to detect most of the outages. Note that
a user here represents their household; in this work, we do
not account for the potential that an individual household
can have multiple phones with GridWatch installed. We
vary this parameter from 0− 100 percent.

• Threshold of reports. When an outage occurs, several
GridWatch users can report the event. This parameter is
defined as the number of reports above which our model
considers an outage as detected. This allows a tradeoff
between detection confidence and outage coverage. To
observe its impact we vary this threshold from 1 to 5.
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• WiFi detection accuracy(Pacc). GridWatch aims to detect
outages by identifying changes in surrounding WiFi sig-
nals. We incorporate a measure of accuracy to observe
the fluctuations in outage detection when we vary this
parameter in our model.

• Proportion of households with WiFi access points (Pw).
The availability of WiFi signals around GridWatch users
affects the ability of the system to observe outages
indicated by changes in available WiFi networks. This
parameter depends on the demographics, income level,
and geographic location of households.

• Proportion of households that are located between each
other at a distance greater than the WiFi coverage range
(Pout). Households that are located at a distance from
other households greater than the WiFi coverage range
can only observe signals from their own access points or
charging patterns to detect outages using GridWatch.

The local variables are:
• The average (µ) and standard deviation (σ) of the number

of households affected by the outage across every unique
agent reported in the dataset. These variables allow us
to generate the random variable N which refers to the
number of households affected for each simulated outage
using a normal distribution.

N ∼ Normal(µ, σ) (1)

• Probability of faults across each hour of day (Pf ). This
is obtained from the frequency of outages experienced
per agent. Given that an outage occurs, we calculate the
probability of having a fault at that specific time of day
and caused by the given agent.

• Number of households affected having the GridWatch
app installed. This is a binomial random variable with
parameters of the number of affected households and the
proportion of users with GridWatch installed (Pgw).

ngw ∼ Binomial(N,Pgw) (2)

• Number of GridWatch users that can report only moni-
toring charging states (nch).

nch = ngw · Pout · (1− Pw) (3)

• Number of GridWatch users that can report only moni-
toring WiFi signals (nw).

nw = ngw · (1− Pout) · (1− Pch) (4)

• Number of GridWatch users that can report using both
mechanisms simultaneously (ncw).

ncw = ngw − nch − nw (5)

• Number of GridWatch reports when an outage occurs.
This local variable is obtained adding the number of
reports in nch, nw, ncw using binomial random variables:

ri ∼ Binomial(ni, Pd(ni)) (6)

TABLE II
PERCENTAGE OF DEPLOYMENT FOR 80% OUTAGE DETECTION

Constituency WiFi penetration
in Nairobi 10% 30% 70%

Kamukunji (KAM) 36 18 13
Westlands (WES) >100 70 45

Dagoretti North (DAG-N) 87 46 31
Roysambu (ROY) 30 15 10

Starehe (STA) 100 55 35
Langata (LAN) >100 76 48

Dagoretti South (DAG-S) 21 12 8
Kasarani (KAS) 40 20 13
Ruaraka (RUA) 77 41 26

Kibra (KIB) 87 46 30
Mathare (MAT) 28 15 9

Embakasi West (EMB-W) >100 83 60
Embakasi East (EMB-E) 48 25 16

Embakasi North (EMB-N) 37 19 13
Embakasi Central (EMB-C) 11 7 4
Embakasi South (EMB-S) >100 92 57

Makadara (MAK) 100 56 37

Where i denotes each category and their respective prob-
ability of detection Pd is:

Pd(nch) = Pch (7)

Pd(nw) = Pacc · Pw (8)

Pd(ncw) = Pch + (Pacc · Pw)− Pch · (Pacc · Pw) (9)

V. RESULTS

In this section, we examine the response of our ABM to
variations in parameters including the threshold of reports,
the proportion of users with GridWatch installed, and the
proportion of households with WiFi access points. We also
evaluate the deployment strategy required to maintain an
outage detection rate of 80% across each of the constituencies
and identify the dynamics of detection in each area.

A. Detection with varying WiFi penetration

We begin setting an outage detection goal for each of the
constituencies of 80% and evaluate the deployment strategy
required at three different levels of WiFi penetration (low,
medium, and high): 10%, 30%, and 70%. Table II summarizes
the results for each constituency and shows that for low WiFi
penetration, in certain constituencies we never met the detec-
tion goal even having a deployment of 100% of users with
GridWatch installed. The regions with this high deployment
requirement match the ones with a low number of households
per transformer. In this experiment we set the threshold of
detection to three and the WiFi detection accuracy to 50%.

Figure 3 shows the results of varying WiFi penetration
at different proportions of users with GridWatch in Kibra
Constituency, which has a large population under the poverty
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Fig. 3. Outage detection in Kibra Constituency, which has a large population
under poverty line, at different levels of WiFi penetration. Outage detection
starts to saturate after 50% penetration.

line. We observe a substantial improvement in detection (up to
35%) in changes from 10% to 50% WiFi penetration. However,
increments beyond 50% WiFi penetration yield diminishing
returns. As expected, increments in the proportion of Grid-
Watch users increases the proportion of outages detected. In
the following experiments we approximate and fix the WiFi
penetration to 30% based on the number of internet broadband
subscriptions reported by the Communications Authority of
Kenya in the second quarter of financial year 2016-2017 [18],
which reports a total penetration level of 28.7% with a growth
rate of 6.7%. Even though the penetration in Nairobi might be
higher and not all of these connections represent WiFi access
points, we consider 30% a suitable estimate.

B. Varying threshold of outage detection

An important parameter is based on the definition of an
outage using GridWatch. In this approach, we vary the thresh-
old of reports from 1 to 5 apps reporting. Ideally multiple
reports need to be considered in order to flag an event as
a detected outage so we can reduce the probability of a
false positive detection. We want to observe how varying this
threshold affects the likelihood of detection across different
proportions of GridWatch users. Figure 4 shows the results
of this experiment in Dagoretti North Constituency. We can
observe how a threshold of 1 can reach a high proportion
of outage detection: 70% of outages were detected with only
10% of households having GridWatch installed. However,
this scenario is not practical since this detection threshold
is not enough to mitigate false positive events. We believe
that a reasonable threshold is 3 to balance between detec-
tion confidence and coverage at a lower cost. Even though
larger thresholds can reduce false positive events, the strategy
requires high deployment penetration to capture the desired
number of outages.

Fig. 4. Outage detection in Dagoretti North Constituency at different thresh-
olds of outage reporting. This constituency has one of the largest densities of
outages per km2.

Fig. 5. Proportion of outages detected when 20% of users have GridWatch
installed versus number of households per transformer in each constituency.

C. Dynamics between densities and detection

For this experiment, we defined a fixed proportion of
GridWatch users at 20%, a threshold of reports equal to 3,
WiFi accuracy of 50%, and WiFi penetration of 30% across
all the constituencies. Figure 5 shows the proportion of outages
detected versus the number of households per distribution
transformer. We found that a larger number of households
per transformer can detect a higher proportion of outages,
with a positive correlation of 0.62. It is worth noting that the
correlation is not linear but logarithmic. Thus, to ensure equal
outage detection across areas, the ideal deployment penetration
of GridWatch should substantially vary by constituency.

Figure 6 shows the deployment penetration required to reach
80% outage detection in each constituency. As with previous
experiments, we set the detection threshold to 3 reports, 30%
WiFi penetration, and 50% WiFi accuracy. We observe that
the best fit shows an exponentially decreasing function with
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Fig. 6. Proportion of users with GridWatch installed needed for 80% outage
detection versus number of households per transformer in each constituency.

R2 of 0.45; while this is not perfect correlation, we believe
this characterizes a fundamental pattern. Even though there
is a higher variance between the deployment required and
households per transformer to meet the detection goal, it is
still possible to observe a trend of decreasing deployment
for higher household density per transformer. We note the
especially large range in deployment penetrations needed in
each constituency to achieve similar detection rates.

VI. FUTURE WORK AND CONCLUSIONS

In this work we developed an ABM simulation to explore
the deployment strategy of GridWatch, a novel crowdsourcing
system to detect electricity outages using the sensors embed-
ded in commodity smartphones, in real settings. We evaluated
the size of deployment required in different sub-regions of
Nairobi, Kenya, and observed the changes in the confidence of
detection when there are differences in population density, grid
infrastructure, and outage patterns among these regions. Out-
age detection improves with increasing density of households
per transformer, so a higher penetration of GridWatch devices
is needed in areas with sparser grids. We also considered the
variation of parameters that enable the sensing of outages: the
availability of WiFi signals exposed by the WiFi penetration
and the threshold of reports to consider an outage detected. We
found that improvements in outage detection from increased
WiFi access saturate at 50% WiFi penetration and varying the
threshold number of devices for outage detection provides a
tradeoff between coverage and confidence. As we continue this
work, we will collect charging patterns specifically from the
area of studies and test our deployment strategies in similar
settings. With further study and deployment experience, we
believe that nontraditional and sidechannel sensing methods
can improve monitoring and management of electricity grids.
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