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ABSTRACT
The power grid is one of humanity’s most significant engi-
neering undertakings and is essential in developed and devel-
oping nations alike. Currently, transparency into the power
grid relies on utilities and more fine-grained insight is pro-
vided by costly smart meter deployments. We claim that
greater visibility into power grids can be provided in an in-
expensive, crowdsourced manner independent of utilities by
leveraging existing smartphones. Our key insight is that an
unmodified smartphone can detect power outages by moni-
toring changes to its own power state, locally verifying these
outages using a variety of sensors, and corroborating with
other phones through cloud services. This approach enables
a decentralized system that can scale, potentially providing
researchers and concerned citizens with a powerful new tool
to analyze the power grid and hold utilities accountable for
degradation in power grid quality.

Categories and Subject Descriptors
B.8.m [Hardware]: PERFORMANCE AND RELIABIL-
ITY—Miscellaneous

General Terms
Economics, Measurement, Reliability, Security

Keywords
Smart Grid, Power Monitoring, Crowdsourcing, Smartphone
Applications, Side Channel Information

1. INTRODUCTION
The power grid is of enormous importance to global welfare,
and it stands to reason that information regarding its sta-
bility would be of interest to researchers, policy makers, and
the public at large.

The current paradigm for increasing visibility into the power
grid is via a centralized network of utility owned, deployed,
and controlled smart meters. While this can offer a highly
detailed view into the power grid, this approach has its flaws.
As the smart meters are controlled by utility companies,
they do not necessarily yield greater transparency and vis-
ibility to researchers and the public at large, limiting their
usefulness in helping third parties audit power grids. This
is especially problematic in countries where corruption may
play a role in controlling the external perception and re-
porting of power grid quality. Furthermore, smart grids are
costly, and thus hard to scale in developing nations, which
conversely is where power grids are least stable and where
increased visibility may be the most useful.

We propose Grid Watch, a new bottom up, automated, and
crowdsourced method of characterizing power grid stabil-
ity. The key insight of Grid Watch is that smartphones can
cheaply detect power outages by monitoring changes in state
while charging. Furthermore, smartphones have various sen-
sors which allow them to locally verify that a loss of power
while charging is actually a power outage.

Grid Watch provides greater transparency as compared to
smart meters by collecting data in a decentralized, grass-
roots manner, making it potentially more useful for mon-
itoring, vetting, and auditing utilities. Furthermore, Grid
Watch leverages the potent and still blossoming global smart-
phone community to cheaply scale, allowing it to occupy a
niche in developing countries that may not be able to af-
ford large smart meter deployments or to fill the void in
countries such as the United States where the deployment
of smart meters has been very slow.

To the best of our knowledge, there is no publicly available
repository of power outage data, much less one that is au-
tomatically updated and independent from utility reports.
We believe Grid Watch could play an integral role in the cre-
ation of such a data set, resulting in a generational shift in
how third parties can analyze power grids and hold utilities
accountable.



Figure 1: Grid Watch Operation Diagram— A plugged-
in phone changes from a powered state to an unpowered
state with grid failure. Grid Watch registers this event, ver-
ifies that it is not a false positive, and reports the event to
the cloud for analysis, export and visualization.

2. GRID WATCH SYSTEM
“Grid Watch” is a crowd-sourced, automated, mobile sens-
ing application. Grid Watch senses a power outage by taking
advantage of two observations: 1) a phone is nearly never
unplugged without being picked up and moved soon after,
and 2) the “hum” of AC mains power can be detected using
the microphone present on the phone. When Grid Watch
detects that a phone has stopped charging, it samples from
the accelerometer and microphone. If analysis of these sam-
ples show that an outage did occur, Grid Watch uploads
the GPS location, system time, and phone unique ID to a
central service. This data is prepared by the central service
for export and visualization and is used as input data into
grid behavior modeling algorithms. An overview of the sys-
tem operation is shown in Figure 1. We implemented Grid
Watch as a smartphone app for both Android and iOS.

2.1 Smartphone Power Outage Detection
Both Android and iOS expose charge state events which are
used to wake the Grid Watch app up from the background.
When an OS event registers that a phone has stopped charg-
ing, Grid Watch samples the accelerometer and microphone
for 5 seconds. The accelerometer detects if the phone is
being moved (unplugged), and an FFT on the microphone
sample detects the AC mains hum. In addition, Android’s
API exposes the classification of charger type, allowing Grid
Watch to easily filter out charge state events that occur
when the phone is charging in the car or over USB. Grid
Watch reports the results of these tests to its central ser-
vice. The app additionally allows users to manually report
outages that were not automatically detected by Grid Watch
(e.g. an outage that occurred when the user’s phone was not
plugged it).

These same tests can be used in reverse to detect the power
outage recovery rate, especially by infrequently sampling the
microphone. Sampling five seconds of audio every 30 min-
utes would require only a 0.27% duty cycle while giving us
currently unavailable data. There is demand for data on
grid recovery, particularly in the event of natural disasters
such as the aftermath of Hurricane Sandy [27].

2.2 The Data
Our current Grid Watch implementation collects the follow-
ing data for each event, which we consider to be the bare
minimum for Grid Watch to be effective:

GPS Location: In order to ascertain outage area, the loca-
tion of outage events must be recorded. In deference to user
privacy concerns, however, the GPS granularity is user con-
trollable. While precise GPS data allows for high precision
of outage reports, we hypothesize that a high density of low
precision locations could also provide sufficiently accurate
outage maps while preserving user privacy.

Unique ID: An ID is not strictly necessary for the correct
operation of a Grid Watch. We collect it, however, for the
purpose of estimating Grid Watch user base and density in
a given area. In addition, we believe users may have an
interest in tracking their own power outages. This belief is
based on the prevalence of power outage maps available on
utility websites in the United States. Lastly, this enables us
to delete all of the events reported by a user if so requested.

Classifier Results: Both of our local outage filters are
threshold-based (did the accelerometer move “too much”;
is the magnitude of the 120 Hz peak “high enough” above
the baseline?). We collect this baseline data to refine our
classifiers and validate our thresholds.

System Time: When a potential outage event is detected,
Grid Watch timestamps the power loss before taking any
other action. This local timestamp is used as the Grid Watch
ground truth of when an outage occurred. In addition, the
Grid Watch service records a timestamp when the event is
actually received. A survey of this delay provides a mech-
anism to test our hypothesis that the independent cellular
backhaul remains a responsive means for reporting during
outages.

2.3 The Central Service
Currently, the Grid Watch central service is responsible for
archiving the reported outage data, basic access controls to
the data, and providing users with feedback regarding their
current power outage and power outage history.

3. EVALUATION
Although we have not yet deployed Grid Watch, we per-
formed experiments to validate a subset of our system’s re-
quirements. We use Grid Watch to detect a power outage in
a house. In addition, we evaluate the Grid Watch false pos-
itive filters and measure the time synchronization between
smartphones.

3.1 False Positive Detection
We performed two experiments to validate our methods of
false positive detection. First, we ran an instance of Grid
Watch using only the accelerometer to filter false positives
on both an iPhone 5 for two weeks and a Galaxy Nexus
smartphone for three days. During this time, phones were
used routinely. The central service did not receive any false
positives during this experiment.

Additionally, we tested the ability of phones to detect the
60 Hz hum from AC mains. We recorded a five second audio
sample from four different phones inside a house and then
turn off the master circuit breaker to simulate a power out-
age. We performed a basic FFT to search the signal for the
AC mains frequency. The results of this survey are shown in
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(b) iPhone 5 Power On
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Figure 2: FFT of audio samples captured on an array of phones inside a house— The top row captures the
environment during normal power and the bottom row is the same environment during a power outage. On all models, a
120 Hz peak (2nd harmonic of the 60 Hz mains) is visible when the power is on but disappears in the event of a power outage.
The iPhones appear to have a 60 Hz notch filter installed in the audio frontend to mitigate noise from the environment, but
none of the harmonics are filtered, allowing our microphone-based detection to remain effective.
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(a) Ten phones detecting the same simulated power outages

Figure 3: Exploring how tightly-coupled timing event
detections are between a variety of phones— For each
trial, phones were connected to the same power outlet, which
we switched off to simulate a power outage. Phones time
stamped the event detection, and we characterize the stan-
dard deviation in reported times for each trial.

Figure 2. We observed the 60 Hz (U.S. AC mains’) frequency
clearly on the phones running Android when the power in
the house is on. On the iPhones, we observed no 60 Hz peak,
indicating that a notch filter is present in their audio fron-
tend, presumably because 60 Hz interference is undesirable
for normal use of the microphone. Fortunately this filter
does not extend to the second harmonic of the AC mains
signal at 120 Hz. The 120 Hz harmonic is also highly de-
tectable in on the Android phones. We built our AC mains
classifier to detect the presence of a 120 Hz peak. To en-
sure accurate detection in other countries, our classifier also
reports the presence of mains power if a 100 Hz peak, the
second harmonic of a 50 Hz mains, is detected.

3.2 Time Synchronization Between Phones
Cascading outages spread within minutes [20], which indi-
cates that the time resolution of Grid Watch outage reports
must be sufficiently high fidelity to be useful in tracking the
spatial and temporal spread of certain outages.

To test this, we connect ten smartphones, with six differ-
ent models, to a single power strip. We turn off the power
switch, and examine the time stamps each phone generates
upon detecting the power outage. We repeated this process
twenty times, and display the results in Figure 3.

We find that the average standard deviation between re-
ported times for an identical power outage was .76 s, with
the maximum standard deviation being 2.145 s. For 19 out
of 20 trials, the standard deviation between reported times
is less than .8 s. The maximum time difference between time
stamps for a single event is 6.21 s. For 19 out of the 20 trials,
the maximum time difference is less than 2.2 s.

From this, we conclude that the time synchronization be-
tween smartphones could be sufficient to help characterize
power outage spreads. Our general knowledge of the depen-
dence of GSM and GPS on accurate timing also supports the
idea that the time synchronization of smartphones should be
relatively high.

4. RESEARCH QUESTIONS
Our initial work in developing Grid Watch raises a number
of research questions both for crowd sourced sensing systems
at large and power for our application of grid monitoring. In
this section we seek to enumerate what we see as the greatest
challenges moving forward with Grid Watch and community
sensing in general.

4.1 Grid Modeling
Power companies in developed countries use a combination
of automated and manual techniques to identify and lo-
calize power outages. Battery-backed smart meters report
outages, but their penetration is limited even in developed
countries [18, 29]. As a result, customer provided reports
supply the most actionable data but are neither automatic
nor quick. We hypothesize that Grid Watch may be able to
provide utility companies with information of high enough
fidelity to support their efforts in performing demand re-
sponse, energy consumption scheduling, and recovery from



massive power outages [20, 21]. We are uncertain, however,
what penetration is necessary to provide results of sufficient
quality to be actionable.

It would be desirable to be able to track the spread of an
outage using Grid Watch data. Clustering appears to be a
natural choice for this problem because the data is inherently
clustered by geographic location and temporal position as
well as by the topology of the power grid [23]. Additionally,
past work has shown cascading power failures follow spatial
and temporal patterns [30]. Pattern recognition classifiers
might allow for cascading power outages to be recognized
from Grid Watch data.

4.2 Coverage
We recognize that the efficacy of Grid Watch depends on
motivating the public to install and run our system. We are
optimistic that we would achieve some level of penetration
given the high participation rate in several non-monetarily
incentivized community-sensing projects, which we discuss
in Section 5. In addition to the simple penetration provided
by Good Samaritan participants, we aim to add features
such as outage statistics, estimated time to power return,
and utility comparison that provide sufficient value-add to
motivate additional users to join the Grid Watch platform.
Several of these such features are provided by existing util-
ity company apps, which have several thousand installed
users [6], and further serve our conviction that the poten-
tial installed user-base for Grid Watch is large enough to be
effective.

For Grid Watch, coverage also refers to Grid Watch’s usage
case coverage. While a majority of smartphones are plugged
in at night while people are sleeping, the limited set of people
who work nights, work at home, or otherwise may leave their
phone charging during the day presents an intriguing chal-
lenge for Grid Watch. However, the growing sector of ultra-
books and convertible tablets presents another opportunity
to expand the coverage of Grid Watch. As per the Windows
8 Ultrabook Specification, convertible tablets must contain
an accelerometer to be considered an ultrabook, and regular
ultrabooks are recommended to have accelerometers. We
believe that microphones are fairly standard across all mo-
bile devices, and regular tablets already contain many of the
same sensors that smartphones contain. Even if Grid Watch
can only perform widespread characterization of the power
grid while people are sleeping at night, we would consider
it a success. However, the smaller population segments and
other information vectors discussed presents an interesting
research direction to push the coverage limits of a crowd-
sourced and automated power outage sensing system.

4.3 Technical Deployability
Once the initial hurdle of encouraging people to participate
in Grid Watch has been surpassed, there are further chal-
lenges that come with growing Grid Watch to global scale.

The Android ecosystem largely accommodates Grid Watch,
providing us with an easy to access marketplace and a strong
API which allows us to differentiate charging sources on An-
droid phones. However, the iOS ecosystem presents us with
a few problems. In iOS 6.0, only six types of applications
are allowed to run as long-term background programs. This

means that getting a non-developer addition of our Grid
Watch app approved by Apple would require either a very
flexible reading of the background application requirements,
or for Apple to revise their policy regarding background
applications. This is a challenge faced by many would-be
community sensing applications, such as earthquake moni-
tor or nuclear detectors that are beginning to emerge. We
are hopeful, however, given Apple’s new M7 chip and the
focus on long-term background data collection using only
in-phone sensors, that a new class of Apple-sanctioned ap-
plications will emerge.

In addition to software challenges, hardware diversity plagues
all application developers. While our limited survey from
Figure 2 was able to successfully run common software to
extract the 120 Hz peak, we recognize the probability that
a greater array of microphones would increase the challenge
of ensuring that our AC-mains presence classifier remains
effective.

4.4 Data Integrity
As Grid Watch begins to accumulate data, it becomes im-
portant to develop some metrics to establish the quality of
the Grid Watch data. In areas where power companies are
well-instrumented and share data, this provides an excel-
lent check. For regions where Grid Watch seeks to supplant
utility data, other means of validation are required.

In practice, there are often many other events that can be
correlated to a power outage. In Kenya, for example, many
customers currently publicly tweet outage reports to the na-
tional utility. Other possible avenues include weather re-
ports or newly emerging global Internet health surveys—a
geographically clustered area of server outages likely indi-
cates a physical failure of some kind.

Focusing internally, there are other analyses on the Grid
Watch data itself that can further provide integrity checks.
Existing systems for load forecasting use a diverse array of
techniques such as time-series predictors, neural networks,
nearest-neighbor approaches, and QP [20] to model the grid.
Running these models on our Grid Watch data may provide
insight on how well Grid Watch models the grid, how well
the models adhere to recorded data, or both.

Finally, we recognize that the Grid Watch system remains
entirely vulnerable to “Bad Actors”. It remains an open
question as to whether it is necessary to protect Grid Watch
from intentional manipulation and if so the correct mecha-
nisms for this protection may be.

4.5 Recovery Rate and Data Resolution
The current Grid Watch application is focused on detect-
ing and characterizing power outages. Unfortunately, this
misses the perhaps equally interesting characterization of
the rate of power outage recovery. A key component of mea-
suring grid health is to evaluate not only how often the grid
fails but how quickly and effectively we are capable of re-
pairing it.

One way to do this would be to allow a central service to
query sensors on the phone, which combined with context
detection and GPS may allow phones to guess if they should



be able to detect AC mains, and then see if they can actually
detect it. Furthermore, the ability to perform this type of
query would allow for on demand increases in data resolution
by using the event detection of one phone to wake up other
Grid Watch clients.

4.6 Increased Sensor Utilization
The variety of sensors in smartphones raises the possibility
of developing new and novel classifiers for detecting outages
more reliably. In addition, these sensors could be tasked to
further monitor the health (e.g. phase) of an active power
grid. For example, the gyroscope and magnetometer could
be used to provide greater false positive detection and addi-
tional characterization of AC mains frequency.

It has been shown that a 50 Hz1 fundamental AC frequency
can be extracted from digital audio recordings with a high
degree of accuracy [22]. This work supports the Grid Watch
technique of monitoring for AC mains by analyzing audio
captured from the microphone. Currently, power companies
use phasor measurement units, or PMUs, to characterize fre-
quency swings and differences in a wide area network [12].
The magnetometers and/or microphones on smartphones
may allow Grid Watch to act as a low resolution PMU, al-
lowing us to generate frequency differential maps to further
increase visibility into the power grid.

5. RELATED WORK
Grid Health: Access to the real-time power grid status
is critical to its stability. Grid modeling and response is
well-studied, but these models require dedicated instruments
to gather accurate real-time data of the power state. [15,
17, 23]. Grid Watch aims to provide data to support this
analysis with commodity mobile phones.

Grid Data: Out of seven United States power companies
surveyed 2 none provide historic outage data. These compa-
nies do display real-time high resolution outage information
on their websites, although this data is not made available
in an easily exportable format. The Department of Energy
requires utility companies to report outages that affect over
50, 000 customers for more than an hour and compiles this
data into public annual reports [3].

The World Bank tracks the number of power outages that
firms experience in a typical month in countries around the
world and makes this data accessible [31]. This information
relies on surveys and only reports company level outages.
To the best of our knowledge, there exists no automatically
updated individual level outage data repository.

Community Sensing: Previously deployed community sens-
ing projects have attracted high amounts of participation.
As of July 2013, the Zooniverse community sensing plat-
form contained over 800, 000 participants across 12 different
projects [13]. Other community projects such as Seti@Home [8],
GitHub and Government [5], and Folding@Home [4] have
also enjoyed great success despite the lack of monetary in-
centivization. One community smartphone project that has

1This research was conducted in Poland.
2DTE Energy, ComED, PG&E, National Power, Duke En-
ergy, XCLE

enjoyed immense success is Waze, a crowdsourced car nav-
igation program with a community of around 50 million
users [10]. We believe that his demonstrates that the same
sense of community good that drove computer based crowd-
sourcing projects can also apply to the smartphone commu-
nity.

Outage Detection: A survey of utility companies3 shows
that companies now leverage automated telephone services,
online “outage tools”, smartphone applications, and social
media sources as means to report outages. However, these
methods still rely on customers to report the outage in a
timely manner.

Utility companies have the ability to perform measurements
over large-scale systems using supervisory control and data
acquisition systems and phasor measurement units [2, 7]. In
monitoring individual homes, companies still rely in part on
traditional meters which require manual recording by em-
ployees in the field. In developed countries, an advanced
metering infrastructure (AMI) is being deployed [1] that
automates power measurements through the use of “Smart
Meters”. However, due to cost and privacy concerns, AMI
adaptation varies between countries [14, 16]. In the United
States overall adoption has reached less than 30% with sub-
stantial government support as of mid 2012 [9]. Grid Watch
seeks to fill this gap by providing opt-in, automated, fine-
grained power information with minimal infrastructure and
deployment cost.

Many smart meters use communication back-ends that rely
on the power grid [19, 24, 28], making their utility suscepti-
ble to grid failures. In contrast to smart meters, Grid Watch
is resistant to power grid failures. In the case of a power loss,
Grid Watch endpoints have batteries and mobile networks
typically have grid-redundant power supplies [11, 25, 26].

6. CONCLUSION
We propose Grid Watch, a global, crowd-sourced grid mon-
itoring platform that leverages a simple side-channel avail-
able to smartphones—the charger status—coupled with the
reliable and independently powered cellular network to pro-
vide a simple, free, and easily deployable grid monitoring
solution. Our preliminary results show the viability of col-
lecting tightly time-synchronized power state events from
heterogeneous phones and operating systems, demonstrat-
ing the viability of our key idea. Much remains to be ex-
plored, including the challenges of scaling the system, min-
imizing false positives and ensuring individual privacy and
safety while maintaining the authenticity and integrity of
the distributed reports. If deployed at scale, Grid Watch
could provide unprecedented public data about the global
power grid, to the benefit of the public, utility companies
and regulators.

3 DTE Energy, ComEd, Duke Energy, National Power,
XCEL and PG&E
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