
GetMobile March 2019 | Volume 23, Issue 134

[HIGHLIGHTS]

T he smartphone is an incredible computing platform. Loaded with powerful processing, vast data
storage, near-global connectivity, built-in batteries, and a rich array of sensors, these devices
reliably service the needs of billions of users every day. However, when tasked to run just a single
application continuously without any human interaction, the smartphone platform becomes

surprisingly unreliable. Over the course of a four-month deployment of Android-phone-based cellular
gateways in Zanzibar, Tanzania, all 16 deployed phones failed despite significant engineering efforts,
and six phones became physically damaged. This article examines what went wrong and how mobile
computing platforms could adapt to support more traditional embedded computing roles and workloads.

Excerpted from “Experience: Android Resists Liberation from Its Primary Use Case” from MobiCom ’18, Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking with permission. https://dl.acm.org/citation.cfm?id=3241583 © ACM 2018

YOU CAN’T TEACH
A NEW PHONE OLD
TRICKS: Smartphones
Resist Traditional
Compute Roles

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m

35March 2019 | Volume 23, Issue 1 GetMobile

This small deployment should have been
straightforward. Collaborators exploring
electricity grid reliability wanted to measure
voltage quality for a small number of
households in rural Tanzania. There are a
wealth of existing commercial “smart plug”
power meters marketed for smart home
applications, but these sensors need to
offload data via nearby Wi-Fi or Bluetooth,
which was unavailable in participant homes.
We turned to the smartphone, thinking
it would be simple to write a gateway app
to forward data from Bluetooth over a
cellular connection back to our servers.

Unfortunately, our experience suggests that
many of the expected benefits of building a
user-free, phone-based gateway are either
unattainable or difficult to achieve in
practice. Our work inadvertently revealed
the issues that arise from the fundamental
tension of converting a general-purpose,
user-facing platform into a single-purpose,
remotely supervised device.

DESIGN CONSIDERATIONS
Figure 1 presents the PlugWatch system
architecture. PlugWatch uses a plug-load
power meter as a sensor and forwards data
via an Android smartphone. The decision to
build around a smartphone was made with
several expected benefits:
• Reduced Development Time: By using

a smartphone as the primary processor,
local database, and radio interface, we

expected to reduce development time
and costs compared to designing custom
hardware.

• Increased Reliability: Android and
Google services, such as the Play Store,
offer over-the-air updates and remote
monitoring out of the box.

• Easier Debugging: The mature
development tools and built-in GUI on
a smartphone help with debugging and
verifying local network connectivity.

REQUIREMENTS
The design of the PlugWatch system met a
number of functional requirements:
• Minimal Human Interaction: We decided

to keep humans out of the loop as
much as possible to reduce the burden
of participation and remove noise from
incorrect human operator actions.

[HIGHLIGHTS]

Noah Klugman, Meghan Clark, Matthew Podolsky
and Pat Pannuto University of California, Berkeley, Berkeley, CA
Jay Taneja University of Massachusetts, Amherst
Prabal Dutta University of California, Berkeley, Berkeley, CA

Editors: Nic Lane and Xia Zhou

FIGURE 1. PlugWatch system architecture
and implementation. A gateway app (a) on
an unmodified Android phone (Samsung
J1 Ace running Android 4.4.4) connects to a
commercial plug-load power meter (WiTenergy
E110) over Bluetooth Low Energy and forwards

the power data from the sensor to a cloud
server. In our implementation, the plug-load
meter (b) plugs into the wall, and the phone
(c) plugs into the meter. The phone is placed in
a plastic box (d) which is padded with cotton
balls and screwed shut.

GetMobile March 2019 | Volume 23, Issue 136

1 The full technical paper is at https://arxiv.org/abs/1705.06640.
2 The source code is available at https://github.com/peikexin9/deepxplore

• Reliably Long-Running: Our experi-
ment was intended to measure variance
in voltage and power quality for many
months, so we designed PlugWatch to
run 24 hours a day.

• Non-Obtrusive: Since the deployment
sites were households, we designed
PlugWatch and configured Android
to not make noise, display lights, or
otherwise annoy participants.

• Real-Time Data Stream: Our utility
partners were interested in receiving
plug-load information in real time to
experiment with how they might process
smart meter datastreams.

• Low Budget: Our budget was modest
and targeted a complete per-unit system
cost of approximately $100 USD. This
partially motivated our selection of an
economical mid-range phone available
in the local geography.

IMPLEMENTATION CHALLENGES
PlugWatch was developed and tested in the
lab, then assembled in the field, as shown in
Figure 1. Actually repurposing smartphones
to operate independently from human
contact revealed a number of challenges.

Staying On
Despite its large battery, a phone may still
completely exhaust its energy reserves
during long power outages and then shut
down. Most phones are configured to
charge – but not power on – after an outage.
Indeed, only select phone models even
have the hardware to support automatic

power-on, and achieving this functionality
required rooting the phone and exploiting
a hack that replaces the charging image to
boot the phone.

Staying Connected
Staying connected to the cellular network
requires manual in-country maintenance.
The local carrier offered prepaid data plans
in which airtime is purchased as a code
behind a scratch-off ticket. This code must
be entered by hand into the phone over an
Unstructured Supplementary Service Data
(USSD) interface, which is only available in-
country. The purchased bandwidth expires
regardless of usage rates on timelines
ranging from a few hours to 60 days.

Staying Alive
Android aggressively optimizes mobile
phone behavior for user experience. We
found that the OS would periodically close
background services (which run even
when an app is not displayed on screen) for
garbage collection purposes. We used four
techniques to circumvent the automatic
garbage collection process:

1. The app generated notifications in the
status bar, transforming the gateway
service from a background service into a
foreground service that was less likely to be
killed by the OS under memory pressure.

2. The app forced the OS to keep the UI
open on the screen, restarted the app on
crash and boot, and disabled navigation
buttons.

3. A separate watchdog process periodically
woke and restarted the primary app
process if it was no longer running,
or rebooted the phone if a threshold
number of restarts was exceeded.
Likewise, the primary app process
would restart this watchdog process if
necessary.

4. The app used Android accessibility
services to catch and automatically close
all dialog boxes launched by the OS by
using a heuristic of soft clicking either
the only button or the leftmost button in
the pop-up. This heuristic was sufficient
to dismiss all system dialog boxes
encountered during testing.

FIGURE 2. Number of power measurement
packets forwarded from the plug-load meter
by the PlugWatch app to the cloud service.
PlugWatch reports a power measurement at

1 Hz. Therefore, the daily theoretical maximum
number of packets is calculated as number of
seconds in a day multiplied by the number of
phones reporting any packets during a day.

After each field officer’s visit to perform
smartphone maintenance activities, the
number of measurements received improved
dramatically, then declined.

[HIGHLIGHTS]

(a) Packets forwarded over entire deployment (b) Close-up for month of January

WHEN TASKED TO
RUN JUST A SINGLE
APPLICATION
CONTINUOUSLY
WITHOUT ANY
HUMAN INTERACTION,
THE SMARTPHONE
PLATFORM BECOMES
SURPRISINGLY
UNRELIABLE

37March 2019 | Volume 23, Issue 1 GetMobile

DEPLOYMENT OUTCOMES
After deploying 16 PlugWatch systems in
Zanzibar for four months, we found that
PlugWatch underperformed in the field. As
Figure 2 shows, even the two highest yield
days of the deployment did not achieve
half of the theoretical maximum number
of packets. The plug-load meters were
functional at the end of the deployment,
leading us to conclude that most failures
were due to the phones.

Human Attention Helps
Field officers visited each household
monthly to perform maintenance tasks
including re-establishing the Bluetooth
connection, installing available updates,
clearing any system messages, and
emptying the SD card. These visits account
for the peaks in Figure 2. While our
implementation efforts explicitly included
routines that emulate human interaction,
we could not match the performance boost
of actual human attention.

Long Tail of Errors
By far the most common error was the
external watchdog app catching dead
processes, which unfortunately provides
no insight into why the core app failed.
The next most common errors came from
system service failures, which are bugs our
app alone could not fix, leading in part to
the need for frequent restarts. We observed
a wide distribution of uptimes across the

deployment as shown in Figure 3. The high
variance suggests that several different factors
shortened lifespan, making it hard to draw
strong conclusions about the root cause of
such frequent app restarts and phone reboots.

Physical Catastrophes
By the end of the experiment, eight of the
16 deployed PlugWatch devices exhibited a
visibly swollen battery, as Figure 4 shows.
We hypothesize that battery problems led
to the sharp drop-off in packets around
February 5th, as seen in Figure 2. The worst
battery was swollen to 270% its normal
thickness. Six batteries were so swollen that
they pushed the plastic phone backing out
of its setting and the battery was no longer
seated in the electrical contacts.

LESSONS LEARNED
While our case study is a single deployment
of a modest number of devices, it serves
as a microcosm of a seemingly common
deployment model: repurposing otherwise
highly capable devices as an ad-hoc sensor
data collection network.

Human Interactions are Critical
Keeping humans in the loop during the
experiment was ultimately necessary to
keep the system operational. Unfortunately,
our early design choices prevented us
from taking advantage of this fact once
discovered: we intentionally did not design
a UI that would allow participants to easily

interact with devices, did not include
participant-device interaction in our IRB
application, and screwed the phones into
boxes with tamper-resistant hardware.

User-Centric Phone Design Hurts
Unattended Applications
Recent changes to Android have made
things better for users but worse for
unattended applications like PlugWatch.

[HIGHLIGHTS]

FIGURE 3. Uptime in hours before an app
restart or phone reboot. Box-and-whisker
plots showing uptime over: (a) the full range
of uptime; and (b) 0-0.5 hours. Each phone
exhibits large variance in uptime, ranging from

nearly zero to over 100 hours, which renders
the boxes and whiskers nearly invisible in (a).
However, (b) shows that the mean uptime for
each phone was approximately 15 minutes
or less. Unsupervised recovery from app

crashes and phone reboots is therefore critical
for gateway applications, but we found poor
support for reliable, automatic, and interaction-
free recovery in Android.

(a) Up time per-phone with all outliers (b) Uptime per-phone with Y range near the upper quartile

FIGURE 4. Observed hardware problems.
(a) A battery and phone with its battery after
deployment. Both demonstrate swelling.
These issues did not manifest during thermal
testing. (b) Screen burn-in from a device frozen
in an invalid and unrecoverable state.

(b) Screen burn in

(a) Two swollen batteries

GetMobile March 2019 | Volume 23, Issue 138

Android 6.0 added runtime permissions,
requiring users to manually approve each
permission-protected function as it is
invoked. Android 8 and 9 both constrain
background operations, limiting the OS
services that can wake an app and which
sensors a background service can access.
These changes prevent long-running
background services from taking more
than their fair share of resources, thereby
improving user experience. However,
these changes become significant obstacles
when re-purposing phones as long-
running gateways or sensor nodes without
interactive users.

Physical Environment Matters
Before deployment, we thermal tested the
system at 120°F for 18 hours while logging
battery temperature, battery capacity,
and system reboot events, and found no
unusual behavior. Despite this test, we were
unable to predict the dangerous battery
swelling that occurred in the heat and
humidity of Zanzibar.

You Cannot Future-Proof the Past
Some of the problems we experienced in
Android 4.4.4 have been addressed in later
versions of Android. For example, Android
5.0 added support for Google Enterprise
Mobility Management (EMM) tools, which
might have helped with provisioning
phones, collecting debugging information,
ensuring reliable OTA updates, and remotely
accepting permissions. Android 8.0
introduced Google’s Project Treble, which
would have allowed us to replace or upgrade
the buggy BLE driver on the PlugWatch
phones without modifying the OS kernel
itself. However, even if future versions of
Android addressed all of the Android-related
problems we encountered with PlugWatch,
requiring more mature hardware or
operating systems translates to abandoning
billions of older phones already sold, as
Figure 5 shows. This not only delays the
viability of smartphone gateways until
modern operating systems can penetrate
the market, but abandons the most widely
available computing resource across the
globe. Increasing the reusability threshold,
by even a minor version, could result in
the consignment of millions of phones to
landfills instead of productive second lives
as gateways.

GOING FORWARD
Perhaps someday a user will be able to
“donate their old phone’s body to science”
by triggering an OS upgrade to a gateway-
friendly version of Android. For now,
however, it is difficult to recommend repur-
posing Android smartphones as standalone
gateways or sensors. After a year of sunk
costs and lost time with Android, we gave
up on smartphones and implemented
nearly identical functionality with custom
hardware in a matter of weeks. Our custom
hardware has since spent nine months
deployed in a similar environment with
far better results. n

Noah Klugman is a PhD student in the
Department of Electrical Engineering and
Computer Sciences at the University of
California, Berkeley, where he works on sensing
electric power quality in areas that lack existing
monitoring infrastructure, building systems
to support sensor network deployments, and
enabling societal scale participatory sensing.

Pat Pannuto is an NSF, NDSEG, and Qualcomm
Innovation Fellow who is currently completing
his PhD in the Department of Electrical
Engineering and Computer Sciences at the
University of California, Berkeley. His research
is in the broad area of networked embedded
systems, with contributions to computer
architecture, wireless communications,
mobile computing, operating systems, and
development engineering.

Matthew Podolsky is a researcher at the
University of California, Berkeley, where he
is also the managing director of the
Technology and Infrastructure for Emerging
Regions and the associate director of Data
Analytics at the Development Impact Lab.
His research interests include information and
communication technology for development,
rural cellular communications, and energy
measurement, monitoring, and reliability.

Meghan Clark is a PhD candidate at University
of California, Berkeley, where she works with
Prof. Prabal Dutta (UC Berkeley) and Prof.
Mark W. Newman (University of Michigan)
on improving technologically mediated
interactions with the built environment.
Her research draws upon many disciplines,
including systems, natural language
processing, and mixed reality.

Jay Taneja is an assistant professor of Electrical
and Computer Engineering at the University
of Massachusetts, Amherst. His research
studies the application of computing tools
for measuring infrastructure in developing
regions. He formerly led the Energy research
team at IBM Research, Africa. He received a PhD
in Computer Science from the University of
California, Berkeley.

Prabal Dutta is an associate professor of
Electrical Engineering and Computer Sciences
at University of California, Berkeley. His research
interests straddle the hardware/software
interface and include wireless, embedded,
networked, and cyber-physical systems. He
received a PhD in Computer Science from the
University of California, Berkeley.

[HIGHLIGHTS]

FIGURE 5. Global Android shipments from 2009 to 2017 and corresponding Android version
number at time of shipment. Changing the supported version number by even a minor version
number could potentially affect millions of phones.

